ELECTROLESS COATING OF NON-CONDUCTING SURFACES AND PARTICLES WITH METALLIC TITANIUM IN MOLTEN SALTS

J.Sytchev, Zs.H.Göndör, G.Kaptay

¹LIMOS R&D Group, Department of Physical Chemistry,
Faculty of Materials and Metallurgical Engineering,
University of Miskolc, Miskolc-Egyetemváros, Hungary,
3515

Abstract

Based on the literature review [1-6] and results of our recent work [7], a method to coat particles of a fly ash powder (the main components of it are silica and silicates) with metallic titanium in NaCl-KCl melt has been suggested. Ti⁺²-ions are introduced into the melt by anodic dissolution of titanium metal, and then they disproportionate in the melt according to the following reaction: $2Ti^{+2} = Ti \downarrow + Ti^{+4}$ [4]. Thin, shiny metallic coatings (presumably having two-layered structure: titanium silicide-titanium metal) have been obtained. The following mechanism of titanium silicides formation has been suggested: $4\text{TiCl}_2 + \text{SiO}_2 \rightarrow \text{TiO}_2 + 2\text{TiCl}_4 \uparrow + \text{TiSi}$ (instead of TiSi different Ti-Si intermetallic compounds can be considered, all providing similar results). Mass and electron balances of the titanium metal dissolution reaction have been considered.

Acknoledgement

We are thankful to Mr. Á.Kovács for performing SEM and EDAX analyses, and to Dr. J.Sólyom for his help with X-ray analysis.

References

- 1. Sukhodskii V.A., Gopienko V.G., Trudi VAMI (in Russian), 1960, vol. 46, pp. 146-158.
- 2. Baimakov O.V., Vetyukov M.M., "Electrolysis of molten salts" (in Russian), Moscow, Metallurgiya, 1966.
- 3. Gopienko V.G., Pavlova L.A., Trudi VAMI (in Russian), 1968, vol. 63, pp. 108-114.
- 4. Smirnov M.V., "Electrode Potentials in Chloride Melts" (in Russian), Moscow, Nauka, 1973.
- Glagolevskaya A.L., Kuznetsov S.A., Polyakov E.G., Stangrit P.T., Rasplavy (in Russian), 1987, vol. 1, pp. 81-85.
- Kuznetsov S.A. in: "Refractory Metals in Molten Salts", ed. by D.H.Kerridge and E.G.Polyakov, Kluwer Academic Publishers, 1998, pp. 189-196.
- 7. G.Kaptay, J.Sytchev, Zs.H.Göndör, in: "Proc. of 6th Int. Symp. on Molten Salt Chemistry and Technology", ed. by C.Nianyi and Q.Zhiyu Shanghai Univ. Press, 2001, pp. 178-181.

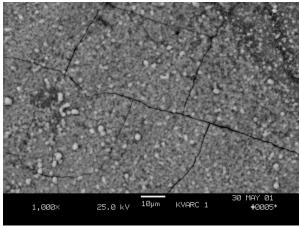


Fig. 1. SEM image of the surface of quartz after titanium deposition

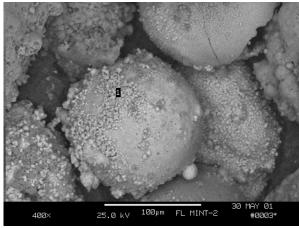


Fig. 2. SEM image of a fly ash particle after titanium deposition

17-JUN-01 15:51:09 EDAX READY RATE- 9CPS TIME- 50LSEC FS- 1650CNT PRST- 100LSEC B = FLYASH MINTA 2 0009/1

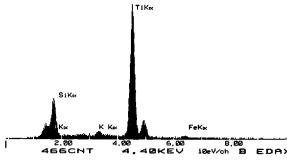


Fig. 3. EDAX spectrum of the fly ash particle (Fig. 2, point 1)

Table 1. Phases identified by X-ray analysis in the fly ash sample

Mineral name	Chemical formula	R*
Mullite	3Al ₂ O ₃ •2SiO ₂	1.038
Quartz	SiO_2	1.079
Titanium Silicide	Ti ₅ Si ₃	1.088
Sillimanite	Al_2SiO_5	1.097
Hematyte	Fe_2O_3	1.144
Silicon Titanium	TiSi ₂	1.151
Titanium Oxide	Ti_2O_3	1.247
Aluminum Oxide	Al_2O_3	1.258

^{*} Parameter R shows how perfect is the match between the measured peaks and the reference peaks for the given material. R = 1.000 corresponds to the perfect match