Polyether-Based Polymer Electrolytes from New Bis[(perfluoroalkyl)sulfonyl] diimide Diliaithium Salts

O.E. Geiculescu, Yuan Xie, S.E. Creager, D.D. DesMarteau
Department of Chemistry, Clemson University
H.L. Hunter Laboratory, Clemson, SC 29634-0973

INTRODUCTION

Most of the previous work on Li salt-based SPEs has focussed on monoanionic salts, especially LiClO$_4$, LiTFSI, Li(Tf) (1) or lately LiBETI, LiBSMI (2), LiNP\tilde{S}I, etc. (3). In the same time some of the work done involved perfluoroalkyl ditiliaithium salts (1, 4) or even polyanionic lithium salts (5-7). The present work considers SPEs prepared from four new lithium salts based on dianions with structures similar to that of LiTFSI (Figure 1), synthesized by DesMarteau and coworkers (6). The dianion in each of the new salts consists of two discrete monoanion units based on LiTFSI motifs that are connected together by a perfluoroalkylene chain of variable length. The polymeric host used was either high molecular PEO or a low molecular weight cross-linked PEG. The work focuses on the ionic conductivity of the SPEs based on the new ditiliaithium salts as a function of temperature.

RESULTS AND DISCUSSION

SPEs preparation (EO/Li=30/1 and 10/1) from the new salts used either a high molecular weight PEO (4·106) and DMF or low molecular PEG (2·103) cross-linked with a triisocyanate. The new SPE membranes were free of residual solvent as shown by 1H NMR and MS analyses (8). All of the SPEs studied were characterized, after being used in EIS measurements, by thermal methods and powder X-ray diffraction. As expected, all of the SPEs studied obeyed the VTF semiempirical correlation describing the temperature dependence of conductivity in ionic conductors:

$$\kappa = A \cdot T^{-1/2} \exp\left(-\frac{B}{T-T_0}\right)$$ \[1\]

At all temperatures and concentrations the conductivities for SPEs prepared from the new ditiliaithium salts were consistently lower than that of SPEs prepared from monomeric LiTFSI which are probably due to a lower contribution of the dianions to the overall conductivity in the new salt SPEs (Figures 2 and 3). Some unexpected trends in conductivity with respect to anion structure were noted – for PEO-based SPEs and diluted PEG-based (EO/Li=30/1) ionic conductivity increases with the anion size, while for the concentrated PEG-based SPEs (EO/Li=10/1) the trend is the opposite. This behavior suggest that higher conductivities might be achievable in more highly perfluorinated salts. These results are encouraging with respect to application and optimization of polyanionic lithium salts in battery technology.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support of this research by the DoD (grant No. DAAG 55-98-1 Q004).

REFERENCES

6. S. E. Creager et al., the 11th IMLB, Monterey, 2002.
8. D.D. DesMarteau et al., to be published.