SYNTHESIS AND ELECTRODE PROPERTIES OF LiFePO₄

Zhu wei,Fan xiaoyong, Pan fusheng, Zhang shengtao Huang zongqing

Institute of Chemistry and Chemical Engineering, Institute of Material Science and Engineering, Chongqing University, Chongqing 400044, China

Introduction

Among the several materials under development for use as cathode in lithium ion batteries, the LiFePO₄ of the phospho-olivine family proposed by Goodenough^[1] and co-workers appears particularly interesting due to the low cost and the environmental compability of its basic constituents. Recently, many investigation ^[2,3] have used ferrite (such as $Fe(C_2O_4)_2$) as the precursor to synthesis the LiFePO₄. However, owing to their poor conductivity Li+ can only be partially extracted/inserted at room temperature. F.croce [4] and co-workers have proposed to improve the electrochemical kinetics of the LiFePO₄ electrode by a specifically designed preparation procedure that considered the dispersion of low particle size metal (copper) powders during the sol-gel formation of LiFePO₄ particles. In this paper we proposed to use the more inexpensive and easily gained material (Fe₂O₃) as the precursor to synthesis the LiFePO₄. In this paper, we also proposed another method not using the nitrogen to prevent iron (II) oxidation.

Experimental

The LiFePO₄ /C composite was prepared by mixing Fe_2O_3 , Li_2CO_3 and $NH_4H_2PO_4$, and 10% carbon. This precursor then put into crucible with carbon covered it and sintered in muffle at 650-750°C for 12h.

Electrochemical cells were assembled in dry atmosphere, utilizing 1M LiPF₆/EC-DEC as the electrolyte, a separator, a cathode composite with 85% sample, 10% carbon black, and 5% binder, and metal lithium as the counter electrode.

Results and discussion

Charging/discharging profiles of LiFePO₄/C at 0.2mA/cm^2 are showed in Fig.1. From Fig.1 we can see that there is a voltage flat around 3.4 V vs. Li, which in turn to is representative of an electrochemical process based on the coexistence of two structurally similar phases (LiFePO₄ / FePO₄). But there is another voltage flat around 2.5V, which maybe another materials is formed.

The cycling stability tests were performed at 0.2mA/cm^2 for 20 cycles in the Fig.2. From Fig.2 we can see that there is little loss of capacity after 20 cycles.

Fig.3 shows a cyclic voltammogram of LiFePO₄ at 0.1mV/s .The pair of peaks, consisting of an anodic and a cathode peak, observed around 3.4V vs. Li/Li⁺ corresponded to the two-phase charge-discharge reaction of the Fe²⁺/Fe³⁺ redox couple.

In conclusion, the LiFePO₄/C composite synthesized by this method successfully got most of the capacity and express excellent capacity stability.

References

- [1] A K Padhi, K. S Nanjundaswamy, and J B Goodenough, J Electrochem. Soc., 144,1188(1997).
- [2] Masaya Takahashi, Shinichi Tobishima, Koji Takei, Yoji Sakurai, Journal of Power source 97-98

(2001)508-511.

- [3] Pier Paolo Prosini, Daniela Zane, Mauro Pasquali, Electrochemica Acta 46(2001) 3517-3523.
- [4] F Croce, A D Epifanio, J. Hassoun, A Deptula, T Olczac and B Scrosati, Electrochemical and Solidstate Letters, 5(3)A47-A50(2002).

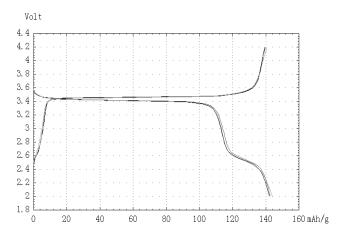


Fig.1 The charging/discharging profiles of the first three cycles of LiFePO₄ at 0.2 mA/cm^2 in the potential range from 2 to 4.2V

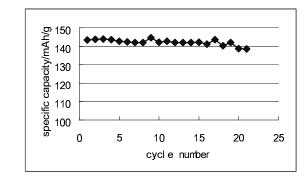


Fig.2. Electrical cycling tests of LiFePO₄ prepared at 700^oC

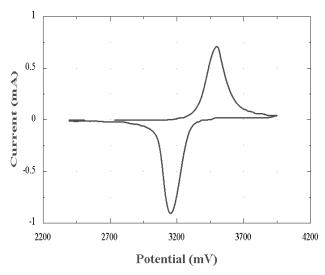


Fig.3 A cyclic voltammogram of LiFePO₄ at 0.1mV/s and at room temperature