Synthesis and Characterization of LiNi_{0.5}Mn_{0.5}O₂ Thin Film by Electrostatic Spray Deposition (ESD) Technique

Chang Wan You, Kyung Yoon Chung, and Kwang-Bum Kim

Dept. of Metallurgical Eng., Yonsei Univ. 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea

Since the commercialization of lithium secondary batteries by Sony in 1990, $LiCoO_2$ is used as a cathode material despite its disadvantages of high cost and toxicity. Due to its disadvantages, many researchers have been seeking for alternative materials, and among those $LiNiO_2$ and $LiMn_2O_4$ have been studied most extensively. Recently, Dahn and Ohzuku proposed new layer structured material, $LiNi_{0.5}Mn_{0.5}O_2$, which showed higher capacity, better cycling stability and thermal stability compared to $LiCoO_2$.^{1,2} $LiNi_{0.5}Mn_{0.5}O_2$ has been aroused as a promising alternative cathode material for lithium secondary batteries.

Dahn synthesized LiNi_{0.5}Mn_{0.5}O₂ by mixed hydroxide method, LiNi_{0.5}Mn_{0.5}O₂ has a relative high capacity (about 160mAh/g) at room temperature. On the other hand, Ohzuku et el. synthesize LiNi_{0.5}Mn_{0.5}O₂ by solid state method. They calcined it at 1000 °C for 15 hours. Recently other researchers reported a powder type LiNi_{0.5}Mn_{0.5}O₂ made by sol-gel method. However, the preparation of thin film type LiNi_{0.5}Mn_{0.5}O₂ has not been reported yet.

In the present study, we synthesized thin film type $LiNi_{0.5}Mn_{0.5}O_2$ by electrostatic spray deposition (ESD) technique. And, its electrochemical and structural characteristics are evaluated by cyclic voltammetry, thin film X-ray diffraction, and X-ray absorption spectroscopy. Using ESD technique, we could prepare additive-free thin film electrode, and collected electrochemical and structural data can be attributed solely to cathode material itself.

Fig. 1 and 2 shows X-ray diffraction patterns and cyclic voltammograms of thin film $LiNi_{0.5}Mn_{0.5}O_2$ electrode prepared by ESD technique. More details will be discussed at the meeting.

REFERENCES

- 1. Z. Lu, D. D. MacNeil, and J. R. Dahn, Electrochem. Solid State Lett., 4, A191(2001)
- 2. T. Ohzuku and Y. Makimura, Chem. Lett., 642(2001)

Fig. 1. X-ray diffraction patterns of thin film $LiNi_{0.5}Mn_{0.5}O_2$ prepared by electrostatic spray deposition (ESD) technique.

Fig. 2. Cyclic voltammogram of thin film $LiNi_{0.5}Mn_{0.5}O_2$ prepared by electrostatic spray deposition (ESD) technique.