CHARACTERIZATION OF A POTENTIAL GATE DIELECTRIC: MOCVD-GROWN ERBIUM OXIDE ON SILICON

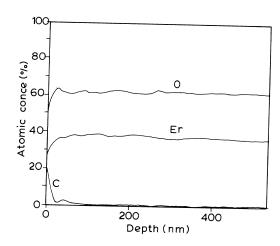
M.P. Singh¹, C.S. Thakur², K. Shalini¹, N. Bhat², and S.A. Shivashankar¹,

Indian Institute of Science, Bangalore 560 012, INDIA

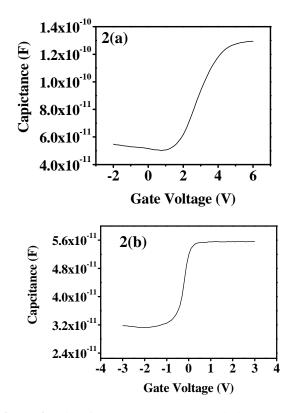
¹Materials Research Centre

²Electrical Communication Engineering

The continuing scaling down of complementary metal oxide semiconductor (CMOS) -based devices leads to the serious problem of gate leakage (tunneling) current. Many materials, such as Al₂O₃, HfO₂, Ta₂O₅ etc. are currently under consideration as the potential alternative gate dielectric for next generations of CMOS-based devices [1,2]. In this search, Er_2O_3 , erbium oxide, offers an attractive alternative to SiO₂ because its dielectric constant (ϵ ~14) is four times that of SiO₂ (ϵ ~ 3.9), and its large bandgap of ~5.6eV [3,4].


In this paper, we report the structural and electrical characterization of erbium oxide films grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) using a β -diketonate complex of erbium. Structural and morphological studies were carried out using various techniques such as X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), which indicate that films grown at lower temperatures (~500°C) are poorly crystalline, whereas films grown above 500°C are polycrystalline with texture. Morphological study reveals that films grown at lower temperature are smooth and mirror-like, whereas films grown at higher temperature are somewhat grainy. Chemical characterization of the films was carried out by Fourier transform infrared (FTIR) spectroscopy and Auger electron spectroscopy (AES). Figure 1 shows the AES depth profile of Er₂O₃ film grown at 600°C, which reveals that the film is carbon-free.

Room temperature high frequency (1MHz) C-V and I-V characterization of the film was carried out on Al/Er₂O₃/Si MIS structures at room temperature. The dielectric constant, flat band voltage, and fixed charge density were extracted from the C-V data (figure 2). For the device made with the film as grown at 525°C, the flat band voltage $V_{\rm fb} \sim 3.6$ V, and the fixed charge (Q_f) = -3.93x10¹¹ qC/cm². After annealing in O₂ at 600°C for 20 min, V_{fb} ~ 0.35 V and Q_f = -1.93x10¹⁰ qC/cm². I_g-V_g characteristic for 525°C grown film is shown in figure 3. Films grown at lower temperatures are more leaky than those grown at lower temperatures (~500°C). The effect of rapid thermal annealing on the dielectric and transport properties of erbium oxide films will be presented, and contrasted with those of "normal" annealing.


REFERENCES

- 1. International Technology Roadmap for Semiconductors, *Semiconductor Industry Association*, (Web address http://public.itrs.net).
- 2. G.D. Wilk, R.M. Wallace, and J.M. Anthony, *J. Appl. Phys.*, **89**, 5243 (2001).
- 3.V. Mikhelashvili, G. Eisentsein, and F. Edelmann, J. Appl. Phys., **90**, 5447 (2001).

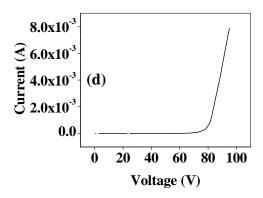

4. H. Ono and T. Katsumata, *Appl. Phys. Lett.*, **78**, 1832 (2001).

Figure 1. AES depth profile of Er₂O₃ film grown at 600°C.

Figure 2. High frequency C-V characteristics on (a) as grown 525°C and (b) post annealed at 600°C in O_2 ambient. (Capacitance area = 7.85x 10⁻³ cm²).

Figure 3. I_g - V_g characteristics of MIS capacitor. (Thickness of erbium oxide film = 1 μ m).