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Oxidation of silicon nanostructures fabricated on S0OI
substrates (pattern-dependent oxidation = PADOX) is a key
process in the fabrication of silicon single-electron transis-
tors (SETs) [1]. The characteristic features of PADOX are
mainly determined by the oxidation-induced strain and by
the oxidation from below due to oxygen diffusion through
the buried oxide, which pushes the silicon on the oxide up-
ward [2]. However, commercial oxidation simulators can-
not reproduce the upward movement of the silicon. In this
paper, we present a two-dimensional simulation of PADOX
of silicon nanostructures fabricated on SOI substrates.

In order to take into account the features of PADOX, a
transition region in which silicon is converted to oxide is
set up at the silicon/oxide interface (Fig. 1) [3]. The strain
due to oxidation-induced volume expansion is applied to
the transition region as a dilational strain, and this expan-
sion pushes the silicon on the oxide upward. The transition
region method has been used for the simulation of LOCOS
[4]; however, it has not been applied to PADOX. Accord-
ing to the expansion, strain development are solved and
siress-strain are analyzed. The calculation flow is shown in
Fig. 2. In addition, the silicon oxide and the transition layer
are treated as viscoelastic solids, and the stress-induced re-
ductions of oxidation reaction, oxygen self-diffusion in the
oxide, and oxide viscosity are taken into account.

The shapes of silicon and oxide after dry oxidation at
1000 and 11040 *C were simulated and compared with the
cross-sectional TEM images (Fig. 3: 1100 °C). The initial
silicon line has a width of 50 nm and a height of 30 nm with
an oxide mask. The shapes of the silicon and oxide after
oxidation were satisfactorily reproduced, which suggests that
the oxidation-induced strain is properly taken into account
in the simulation. The oxidation-induced strain and stress
obtained from the simulation are compression in the silicon
and in the oxide near the interface, and are of the orders of
| % and 1x10" dynefcm’, respectively, both at 1000 °C for
80 min and at 1100 °C for 40 min. This compressive stress
reduces the oxide viscosity by a few orders of magnitude,
and this reduction may play an important role in PADOX,
In addition, the compressive strain of 1 % in the silicon wire
region reduces the bandgap by about 0.1 eV, and this reduc-
tion is critical for the formation of the potential barrier re-
sponsible for SET operation [5]. The compressive strain
obtained in the present simulation is consistent with that
predicted from SET operation. Therefore, the present simu-
lation will be helpful in designing SET structures.

In conclusion, we successfully simulated PADOX on SOI
substrates, especially for the upward movement of the sili-
con. The simulation results suggest that the stress-induced
reduction of oxide viscosity plays an important role in
PADOX. Inaddition, the oxidation-induced strain obtained
from the simulation i1s consistent with that obtained from
the analysis of SET operation.
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Fig. 1. A transition region is set up so that silicon is pushed
upward. (a) Creating the transition region according to oxi-
dant concentration obtained from the oxidant diffusion equa-
tion. (b) Volume expansion of the transition region. (c)
The transition region 15 converted into oxide. Here, v is the
total amount of oxidation obtained from the oxidant con-
centration and ot 1s the volume ratio of consumed silicon.
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Fig. 2. Calculation flow.
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Fig. 3. Simulated shapes (above) and cross-sectional TEM
images (below) of silicon lines after dry oxidation at 1100°C.



