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   MOSFET with a high mobility channel is an attractive 
device structure, which leads to reduction in supply 
voltage with maintaining the high circuit performance. 
From this viewpoint, a strained-Si channel is promising 
for CMOS application [1], because of the high electron 
and hole mobility.  However, strained Si CMOS on bulk 
substrates have the same obstacles as conventional Si 
CMOS, such as junction capacitance, junction leakage 
current and short channel effects. Thus, we have proposed 
strained-Si/ SiGe-on- Insulator (strained-SOI) MOSFETs 
to overcome these problems [2, 3]. This paper reviews our 
recent progress on the fabrication and device 
characteristics of strained- SOI CMOS. 
   Fig.1 shows the typical device structure of strained-SOI 
MOSFETs [2]. Particularly, by adopting fully-depleted 
(FD) structure having a thin SOI layer, strained-SOI 
MOSFETs become more attractive for sub-100 nm node 
CMOS, in terms of higher mobility, immunity to short 
channel effects and statistical variation of Vth. Other 
advantages than the simple combination of SOI structures 
and high mobility are (1) suppression of floating body 
effects due to hole current flow through SiGe pn-junction 
(2) lower self heating effect due to thinner SiGe layers (3) 
possible low dislocation density in relaxed SiGe due to 
slip at the interface between SiGe and buried oxide. 

The most important process in fabricating strained-SOI 
MOSFETs is the preparation of thin and relaxed SiGe-
On- Insulator (SGOI) substrates with minimal dislocation 
density. The main concept of our original approach to the 
SGOI fabrication [4], called the Ge condensation due to 
oxidation, is summarized in Fig. 2. This technique can 
apply to both bulk and SOI substrates with SiGe films.  

When oxidizing SiGe layers on commercial SOI 
substrates, thicker initial SiGe layers and higher oxidation 
temperature can lead to larger relaxation rate and smaller 
defect density [5]. The successful operation of strained-
SOI n-MOS, using this type of SGOI substrates has been 
achieved with the mobility enhancement of 1.67 under the 
Ge content of 23 % [6]. Also, 20-nm-order-strained-SOI 
structures with high Ge content (x>50%) has successfully 
been fabricated by the same method [7] 

Using SGOI substrates made by the combination of 
SIMOX and oxidation [8], the operation of strained-SOI 
CMOS and CMOS ring oscillators have been 
demonstrated, for the first time [9]. Thin and thick 
strained-SOI substrates were used for fabricating FD and 
PD strained-SOI CMOS, as shown in Fig. 3. The mobility 
behaviors are shown in Fig. 4. The mobility enhancement 
of 1.85 and 1.53 has been obtained for n- and p-MOS, 
respectively, with strained-Si thickness of 25 nm and the 
Ge content of 25 %. It was also found from the waveform 
of 101-stage ring oscillators that strained-SOI CMOS is 
70 % faster at Vdd of 1.5 V and 30 % faster at Vdd of 2.5 V 
than conventional SOI CMOS [9]. 
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Fig. 1  Cross section of typical device structure of 
strained- SOI MOSFETs. 

Fig. 2 (a) main concept of the fabrication technique to obtain 
SGOI substrates with high Ge content by oxidizing SGOI 
substrates with low Ge content, called Ge condensation technique 
(b) typical process flows using bulk Si and SOI substrates. 

Fig. 3  TEM images of cross section of strained-SOI substrates, 
where CMOS was fabricated. Two types of substrates with 
different SiGe and strained-Si thickness ((a) 325nm/25nm (b) 
53nm/7nm) were used for FD and PD-SOI MOSFETs, 
respectively. 

Fig. 4  Effective electron and hole mobility in strained-SOI 
CMOS as a function of Eeff. The universal mobility is also 
shown. Two types of substrates with strained-Si thickness of 
25 and 7 nm were used for CMOS. The Ge content is 25 %.  


