Rapid Thermal Process Atomic Layer Deposition of High Dielectric Constant Ultra Thin ZrO₂ for sub 65 nm Silicon CMOS Technology

M. Fakhruddin, ¹ R. Singh, ¹ K. F. Poole, ¹ S. V. Kondapi ¹ and S. Kar²

 ¹Holcombe Department of Electrical and Computer Engineering Center for Silicon Nanoelectronics Clemson University Clemson, SC 29634-0915 U. S. A
²Department of Electrical Engineering Indian Institute of Technology Kanpur-208016 India

Processing and manufacturing a high performance and reliable high κ gate material will be one of the most critical issues for sub 65 nm CMOS technology. Process integration of a new dielectric material with the existing CMOS process sequence will also be a major challenge. Rapid thermal process atomic layer deposition (RTPALD) [1] offers the most viable solution for the processing of ultra-thin gate dielectric materials. Rapid thermal processing is a short time processing technique, which introduces less bulk, and surface defects [2,3]. On the other hand, atomic layer deposition offers the possibility of depositing one atomic layer at a time by utilizing the binding energy difference between chemisorption and physisorption. Combining these two processes, we were able to process excellent quality ZrO_2 (κ = ~25) thin films. For this study, we deposited ZrO₂ films on n-type Si <100> substrates. The thickness of the films was around 2.5 nm. Thermally evaporated gold dots were deposited to fabricate mealinsulator-semiconductor (MIS) capacitors.

At 1 V, we obtained leakage current density of 1.83×10^{-11} A/cm² and capacitance per unit area of 8.07 μ F/cm². These values demonstrate the excellent performance of RTPALD process. Up to 20 MV/cm, leakage current remained relatively low which indicates the good dielectric strength of the material. It was also observed that up to 95^oC, the leakage current density decreases slightly with respect to the increase in temperature. After that, at a certain transition temperature, the leakage current started to increase as the temperature was increased for up to 115^oC. Trap densities in the films were between 10¹⁷ cm⁻³ and 10¹⁸cm⁻³ and for up to 9MV/cm field, the trap density remained constant. These measurements indicate the good reliability properties of the ZrO₂ thin films.

In this paper, complete electrical and structural characterization of ZrO_2 films processed on silicon substrates by RTPALD will be presented.

References

- 1. M. Fakhruddin, R. Singh, K. F. Poole and S. Kar, in Proceedings of the 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors-RTP 2002, p. 89 (2002).
- 2. R. Singh, J. Appl. Phys., 63, R69, (1988)

3. R. Singh and R. P. S. Thakur, The Electrochemical Society Interface, 4(3), 38 (1995).