Development of an UHV Wafer Scale Surface Activated Bonding Machine for MEMS Packaging
Research Center for Advanced Science and Technology,
The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

The key issues of packaging for micro electro mechanical systems (MEMS) devices are the alignment precision, high cost, high-density interconnection, hermetic-sealing and high temperature bonding. Current technology is not mature enough to overcome such difficulties of MEMS packaging. In order to achieve better MEMS packaging, we have developed a wafer scale robot controlled surface activated bonding (SAB) machine. SAB is defined as a fabrication process in which two solid surfaces are atomically cleaned by an energetic Argon ion beam in an ultra high vacuum (UHV) at room temperature. As a result, strong adhesion develops between atoms of the cleaned surfaces under intimate contact. The article reports on the development of a wafer scale robot controlled SAB machine and its application.

Fig. 1 shows the schematic diagram of a wafer scale robot controlled SAB machine. It consists of a transfer chamber surrounded by a processing, a analyzing, a heating, a turning over/preliminary alignment (pre-alignment), an alignment/preliminary bonding (pre-bonding), and a bonding chambers. The SAB machine can accommodate up to 8 inch wafers. An additional low vacuum chamber, called a plasma cleaning chamber in which Ar, O and H plasma treatments are possible, is also joined to the load lock chamber. The pressure ranges from 10^{-5} to 10^{-7} Pa in all chambers.

![Figure 1. Schematic diagram of a robot controlled 8 inch wafer scale SAB machine.](image)

Fig. 2 shows the data for 8 measurements obtained from repeated 9 times alignment of the top and bottom wafers using the Piezo Walking Table, starting with a shift of approximately 100 µm on X, Y, and θ, respectively. Two 140 mm-pitch alignment marks are used on the bottom side of upper and on the top side of the bottom 8-inch wafers. After being loaded into the alignment and pre-bonding chamber, the top and bottom wafers are rectified to less than ±0.5 µm of displacement for X, Y, and θ by the Piezo Walking Table. The bonding head comes down to bond the top and bottom wafers with applying a load of 500 N on the 8 inches wafers. Pre-bonded wafers can be cold rolled under a load up to 10000 N in the bonding chamber.

Samples were sputtered in the processing chamber by a low energy Argon ion beam with a voltage of 80 V and an amperage of 3 A. The sputtering time for Si/structured Si, Si/Au/fused silica, and Quartz/Quartz were 5, 10, and 30 min, respectively. The sputtering was done in such a way that the sample surfaces were free from contaminants but contain a non-visible amount of Fe. Si/Au/fused silica, and Quartz/Quartz bonded wafers annealed at 573 for 8 hr and 773 K for 1 hr, respectively. Si/Si bonded wafers were not annealed. Bonded wafers were cut into small pieces and subjected to tensile test. Bulk fracture was obtained in all samples with bonding strength ranges from 6 to 23 Mpa depending on the sample types.

![Figure 3. Infrared transmission images of Si/Si cavities used in fine leak test.](image)

Fig. 3 shows the infrared images of the cavities formed after bonding between bare Si and structured Si wafers. The estimated leak rate of such cavities was less than 1.0X10⁻¹² Pa m³/s, which satisfies the requirement of 1.0X10⁻⁹ Pa m³/s for MIL-STD-883E encapsulation standard. Figure 4 shows the high-resolution TEM image of Quartz/Quartz interface. An amorphous layer of 100 nm is observed across the interface. No Fe is detected by EDS analysis. In addition, no substantial effect of Fe on the ultra-violet transparency and reflectance of 30 min irradiated Quartz wafer surface. Inhomogeneous growth of dendrites across the interface of Si/Au/fused silica is observed due to the diffusion of Au in Si (not shown).

![Figure 4. HRTEM image of Quartz/Quartz interface.](image)