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Manganese dioxides are the subject of much research as 
positive electrodes in 3V rechargeable lithium batteries 
due to their relatively low cost and toxicity compared to 
other transition metal oxides.  
 β-MnO2 (Pyrolusite), has the rutile structure, 
with single chains of MnO6 octahedra being connected by 
corners to form 1x1 (1 MnO6 octahedron by 1 MnO6 
octahedron) tunnels through the structure. The structure of 
α-MnO2 consists of double chains of octahedra sharing 
corners to form larger 2x2 tunnels, as well as 1x1 tunnels. 
In the mineral Ramsdellite-MnO2, the double chains of 
octahedra are connected to form 2x1 tunnels. de Wolff1 
first described the γ-MnO2 structure as an intergrowth of 
the pyrolusite and ramsdelllite structures. Chabre and 
Pannetier2 expanded upon this model by introducing 
another defect, microtwinning, and also developed a 
method to determine the relative amounts of pyrolusite 
intergrowth (Pr, in percent) and microtwinning (Tw, in 
percent) from the X-ray powder patterns. Our group has 
further expanded on this method3, 4 (with different 
distribution statistics for the microtwinning defects), using 
the parameter Mt (in percent, ≈½Tw) to represent the 
relative amount of microtwinning in the samples. 
 α-MnO2 is usually prepared by chemical 
synthesis.5-7 γ-MnO2 is industrially prepared by oxidation 
of acidic MnSO4 solutions. These materials typically 
contain a relatively large amount of defects, with Pr~50 
and Mt≥50.2 Since the 2x1 tunnels in ramsdellite are 
better adapted to accommodate Li+ ions than the 1x1 
tunnels of pyrolusite, and microtwinning may impede the 
diffusion of Li+ through the structure, it is anticipated that 
materials with lower Pr and Mt values will show improved 
performance in lithium batteries. 
 The electrochemical-hydrothermal method has 
recently been shown to be useful for the synthesis of 
various known compounds such as mixed titanium 
oxides8 and LiMO2 (M=Ni, Co),9 as well as new 
structures of transition metal phosphates10 and 
vanadates.11 With the goal of synthesizing new or 
modified MnO2 compounds approaching the ramsdellite 
limit, we have applied the electrochemical-hydrothermal 
technique for the preparation of manganese dioxides.12, 13 
 
 MnO2 materials with the α, β, γ, or mixtures α/γ, 
γ/β were obtained by oxidation under hydrothermal 
conditions of acidic MnSO4 or A2SO4/MnSO4 (A=Li, Na, 
K, NH4) solutions. The structure of the material obtained 
is dependent on the synthesis conditions (temperature, pH, 
applied current density, presence or not of A+). An 
example of the effects of temperature and pH for an 
MnSO4 solution is shown in Figure 1. The γ-MnO2 
containing materials can be obtained over a wide range of 
Pr values, with relatively low levels of microtwinning 
defects, as shown in Figure 2. 
 The materials were analyzed using X-ray powder 
diffraction, TGA/DTA, ICP/AAS, BET surface area 
determination, redox titration for Mn oxidation state 
determination, and scanning electron microscopy to study 
the morphology. 

 The relationship between structural parameters, 
physico-chemical properties and Li-insertion behavior 
will be discussed. 
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Figure 1.  Phase diagram as a function of 
temperature and pH for materials obtained 
from acidic MnSO4 solutions. 
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Figure 2.  Placement in the (Pr,Mt) plane of 
some of the samples synthesized by the 
hydrothermal-electrochemical method. 


