Lithium nickel manganese oxides have been investigated to advance lithium insertion materials for lithium-ion batteries[1-4]. Of these, LiNi1/2Mn1/2O2 shows anomalous behaviors in both structure and electrochemistry. In order to identify the structure, a systematic study has been undertaken. In the previous paper[4], we have shown that LiNi1/2Mn1/2O2 consists of Ni2+ and Mn4+ ions distributed in a cubic-close packed oxygen array. In this paper, we report detailed crystal structure analysis and electrochemistry of LiNi1/2Mn1/2O2.

LiNi1/2Mn1/2O2 was prepared by heating a reaction mixture of LiOH and nickel manganese double hydroxide at 1000 °C in air. Figure 1 shows the XRD pattern of thus prepared LiNi1/2Mn1/2O2. This material is battery-active, i.e., about 200 mAh/g of rechargeable capacity in 2.5 – 4.5 V. The XRD pattern is similar to that of LiNiO2 having a space group R3m. However, about 9 % of displacement between lithium and transition metal ions at the 3(a) and 3(b) sites is required to give a reasonable fit between the experimental and the calculated pattern (Rwp = 11.28, R = 1.95). For LiNiO2, about 9 % of displacement with a longer c-axis dimension than 14.25 Å meant inactive form for battery application. In other words, when the integrated intensity of the (003) line was stronger than that of (001), we could not expect battery-active materials for LiNiO2-based materials.

In order to examine whether or not such a highly concentrated rock-salt domain is contaminated in our active samples, HRTEM and SAED observations were carried out. Figure 2 shows an example of the HRTEM images for a single domain of LiNi1/2Mn1/2O2. From this direct observation, we have convinced that we need other structure models to describe LiNi1/2Mn1/2O2. Since XRD cannot help so much speculate structural models, electron diffraction measurements are carried out from several incident angles. An example is shown in Fig. 3. Although a [√3 x √3]R30° superlattice formation was not expected because of the composition, extra spots are clearly seen in this figure in addition to fundamental spots based on α-NaFeO2-type structure.

From these experimental and analytical results, we will discuss structural chemistry and electrochemistry of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries.

References

Fig. 1 Rietveld analysis on the XRD pattern of LiNi1/2Mn1/2O2 assuming a space group R3m (a0 = 2.893 Å, c0 = 14.310 Å in hexagonal setting). The R-values are obtained to be Rwp = 11.28, R = 1.95, and s = 1.98 for ca. 9% of displacement between Ni2+ and Li+ ions at the 3(a) and 3(b) sites by RIETAN-2000.

Fig. 2 HRTEM image of single domain of LiNi1/2Mn1/2O2. Layered structure with a cubic-closest packed oxygen is directly seen in this figure.

Fig. 3 Electron diffraction pattern of LiNi1/2Mn1/2O2 along a [1 -1 -1] zone axis. Extra spots corresponding to [√3 x √3]R30° superlattice can be seen in addition to fundamental spots based on a space group R3m.

Acknowledgements One of us (TO) wishes to thank Dr. Yukinori Koyama, Prof. Jso Tanaka, and Prof. Hirohiko Adachi of Kyoto University for their help on understanding electronic structures of lithium nickel manganese oxides with or without cobalt.