MAS NMR Studies of Olivine LiFePO₊

Young Joo Lee, Marca Doeff, Jeffrey A. Reimer, and Elton J. Cairns

Ernest Orlando Lawrence Berkeley National Laboratory, and Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720

LiMPO₄ materials with the olivine structure are of current interest for use in in rechargeable Li batteries. The polyanion PO₄ groups provide bridges between the layers and stabilize the structure even in the fully charged state.¹ Among the various olivine compounds, LiFePO₄ and Li[Fe,Mn]PO₄ show the promising characteristics, which are extremely dependent on synthesis methods.

The ⁷Li NMR spectra of various LiFePO₄, samples showing a range of capacities and cycling stabilities, were obtained. A single resonance at -14ppm is observed for all the materials, which indicates only one local environment for the lithium cations without the presence of a significant amount of defect sites. It is noteworthy that there is no correlation between the electrochemical performance and the structure, implying that the ability of the intercalation /deintercalation of these materials mainly depends on other factors such as the particle size and morphology. The 7 Li NMR spectra of LiFePO₄ samples which were charged to different stages are shown in Figure 1. Here, the extent of the charging is calculated based on the capacity measured (~140 mAh/g) during the charging. As the charging proceeds, a single resonance is seen without a significant change in the peak position. For example, the resonance of the 60 % charged material shifts to -17 ppm, compared to the resonance of the 0 % charged electrode at -22 ppm. Since 60 % charging corresponds to $Li_{0.5}FePO_4$, the electrode has Fe^{2+} and Fe^{3+} in equal amounts. Previously, we observed the resonance at -8 ppm for LiFePO₄ and 68 ppm for $LiMnPO_4$.² Since Fe³⁺ has the same electronic configuration as Mn²⁺, $Li_{0.5}FePO_4$ is expected to give rise to a resonance at 30 ppm, which is not consistent with our observation. Thus, it appears that the lithium cations that remained in the structure have the same environment as LiFePO₄. This raises the question of the deintercalation mechanism of the shrinking core model vs. the mosaic model³ and more work is l under way to clarify the situation.

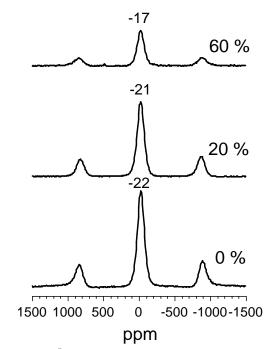


Fig. 1. ⁷Li MAS NMR spectra of LiFePO₄ at different stages of charging. All the spectra were acquired with an echo sequence at a frequency of 25.50 MHz and spinning speeds of 22 kHz. The spectra are plotted with an absolute intensity scale normalized to the amount of sample .

References

- 1. A. Yamada, S. C. Chung, and K. Hinokuma, J. *Electrochem. Soc.* 148 (2001), A224.
- M. C. Tucker, M. M. Doeff, T. J Richardson, R. Finones, E. J. Cairns, and J. A. Reimer, J. Am. Chem. Soc. 124 (2002), 3832.
- 3. A. S. Andersson and J. O. Thomas, J. Power Sources. 97-98 (2001), 498.