Protonic Conductivity Measurements of CsHSO₄/SiO₂ Composite Electrolyte for Intermediate Temperature Fuel Cell

Hitoshi Shigeoka, Junichiro Otomo, Ching-ju Wen, Masaru Ogura, Hiroshi Takahashi Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8656, Japan

1. Introduction

Protonic conductivity measurements in pure CsHSO₄ and CsHSO₄/SiO₂ systems were carried out in the temperature range of 350 K to 460 K, aiming at developing a solid inorganic electrolyte for intermediate temperature fuel cell. We discuss the influence of heterogeneous SiO₂-doping into CsHSO₄ salt on the protonic conductivity as a function of mol ratio of SiO₂ by AC impedance spectroscopic measurements.

2. Experimental

 $CsHSO_4/SiO_2$ composites were prepared by grinding in an agate mortar for 30 minutes, and then pressed at $3t/cm^2$ and finally calcined at 470 K for 1 h in an air. SiO_2 with meso-pores (particle size: 1.3μ m, meso-pore diameter: 22 nm, specific surface area: 300 m²g⁻¹) was used in the present experiments. The conductivity measurements were carried out with Ag-electrodes in Ar atmosphere by Hewlett Packard 4192A impedance analyzer over frequency range of 10Hz-10MHz.

3. Results and Discussions

3-1 Conductivity of (1-x)CsHSO₄/xSiO₂ composite

The temperature dependencies of conductivity of CsHSO₄/SiO₂ were presented in Fig.1. The mol ratio of SiO₂, x, of (1-x)CsHSO₄/xSiO₂ composites was varied from 0 to 0.65. The conductivities in both the pure and composites systems abruptly changed at around 410 K from low temperature phase (350-390 K) to high temperature phase (420-460 K). In pure CsHSO₄, the conductivity-increase of about 3 magnitudes was observed at around 410 K, which was accompanied by a structural phase transition (monoclinic \rightarrow tetragonal). In CsHSO₄/SiO₂ composites systems, at any mol ratio of SiO₂, the conductivity at the low temperature phase increased about one magnitude in comparison with pure CsHSO₄. The maximum conductivity at the high temperature phase was observed at x = 0.15, while the conductivity at the high temperature phase became smaller with an increase of SiO₂ mol fraction.

3-2 Impedance spectra

The impedance plots at 403 K with various mol ratios were shown in Fig.2. While the impedance of the pure CsHSO₄ and the composites with low mol fraction of SiO_2 (x = 0.15) showed one semicircle, two semicircles appeared in the composites with high mol ratio of $\text{SiO}_2\left(x\right.$ = 0.45, 0.60). Thus, we tried to separate and assign the impedance spectra, assuming an equivalent circuit consisted of a series circuit of two parallel circuits of a resistance and a capacitance. As seen in the Fig.2, the high frequency semicircles became smaller with the increase of SiO₂ additives. On the contrary, low frequency semicircles became bigger. It was considered that this trade-off relation for resistances of high and low frequency semicircles resulted in the maximum conductivity at a relevant mol ratio of SiO₂. The values of capacitance of high frequency semicircles are similar to that of pure CsHSO₄ $(5.2 \times 10^{-10} \text{F})$, and those of the low frequency semicircles are larger by 1-2 orders, compared with pure CsHSO₄. Therefore, it is considered that high frequency semicircles are derived from the proton conduction of bulk and interface transfer between $CsHSO_4$ and SiO_2 . This interface phase probably enhances the protonic conductivity. Low frequency semicircles are associated with the slow proton conduction at the boundary inhibited by the SiO_2 particles. Thus, by controlling the dispersed structure of the SiO_2 particles, protonic conductivity can be improved. We consider that further investigations are necessary with the samples prepared with a variety of SiO_2 -characteristics, mixing methods, and structures in $CsHSO_4/SiO_2$ systems.

Fig.1 Temperature dependences of the conductivity of $(1-x)CsHSO_4/xSiO_2$ composites with different SiO₂ contents and pure CsHSO₄ on cooling process. \triangle : Pure CsHSO₄ \diamondsuit : x = 0.15 \blacksquare : x = 0.40 \bigcirc : x = 0.65

Fig.2 Typical impedance plots of $(1-x)CsHSO_4/xSiO_2$ composites at 403 K in Ar atmosphere. Open circle: experimental value; Solid line: fitting curve; Dotted line: deconvoluted semicircles of the fitting curve (a) Pure CsHSO₄ (b) x = 0.15 (c) x=0.40 (d) x = 0.65