IN-SITU RESONANCE RAMAN SPECTROSCOPIC STUDIES OF UREASIL NANOCOMPOSITE REDOX ELECTROLYTES IN HYBRID ELECTROCHROMIC DEVICES

A. Surca Vuk¹, B. Orel¹, Ph. Colomban² ¹ National Institute of Chemistry ¹ Hajdrihova 19, SI – 1000 Ljubljana, Slovenia ² LADIR UMR 7075 CNRS & Paris VI University ² 2 Rue Henry Dunant, 94320 Thiais, France

Solid or semi-solid (gel) redox electrolytes with incorporated I_3^{-}/I^{-} species gain importance due to the recent advances in dye sensitized photo electrochemical cells (DSPEC)¹. These type of redox electrolytes represent a better option because of the long- and shortterm sealing problems usually encountered with DSPEC employing liquid electrolytes. Recently, a new nanocomposite organic/inorganic gel redox conductor made using acetic acid solvolysis was made in our laboratory and used as a semi-solid (gel) electrolyte in DSPEC¹. It consists of bis end-capped triethoxysilane chemically bonded via urea groups to the polypropylene glycol (PPG) chain (n= 3 and 68) while the KI and I_2 served as a source of I_3^{-}/I^{-} redox pair. Since the electrolyte contained also mobile K⁺ ions we decided to test if it could be used as gel electrolyte in hybrid electrochromic devices (ECD)^{1,2}.

The ECD was assembled from electrochromically active WO₃ film facing a thin Pt (sputtered) counter-electrode while the space between them was filled with the electrolyte, which after gelling laminated both halves of the cell together. ECD exhibited fast (< 10 s) coloring /bleaching changes up to 60 %. Cyclovoltammetric curves of the ECDs were recorded at different scan rates and observed current waves correlated to the transmittance changes obtained in in-situ UV-visible spectra. At slow scan speeds (5 mV s⁻¹) in the potential range between -2and 0 V bleaching took place before the corresponding potential in the CV was reached indicating the presence of a side reaction $(I_3^- \leftrightarrow 3I^- + e^-)$ at the WO₃|electrolyte interface. This reaction took place simultaneously with the electrode reaction at the Pt counter-electrode, i.e. 31- $\leftrightarrow I_3 + 2e^{-}$.

Because of high stability (> 2000 cycles), ease of preparation and absence of the counter-electrode with intercalation properties, the ECD seemed a suitable system for *in- situ* resonance micro Raman spectroscopic studies of redox electrolytes during the ECD's operation. The reasons for using resonance Raman spectroscopy lies in the fact that the vibrations of the I_3^- ions, which in great extent determine the suitability of the redox electrolyte for ECDs, give in Raman spectra distinct and well defined symmetric $v(I_3^-)$ and asymmetric $v(I_3^-)$ stretching bands at 111 and 141 cm⁻¹, respectively.

The resonance Raman spectra were measured by focusing the laser radiation on the redox electrolyte encapsulated in the ECD. During the potential cycling between +2 and -2 V (scan rate 5mV s⁻¹) the spectra were recorded for 120 s every 400 s (Fig. 1) so that for every potential cycle four Raman spectra were obtained. Figure 2 showed that the relative intensity of the 111 cm⁻¹ ($v_s(I_3^-)$) band increased during the cathodic cycle and then decreased at positive potentials. That explained the functioning of ECD: the insertion of K⁺ ions in the WO₃ film created excess of I⁻ ions in the electrolyte which transformed at the Pt electrode to the I_3^- while bleaching requires that some of I_3^- ions turned back to I^- .

Instead of electrolyte with ethanol as a solvent other redox electrolytes containing aprotic polar solvents (propylene carbonate and sulpholane) with high boiling point (> 200 °C) will be synthesized and used in ECDs. The corresponding resonance Raman spectra will be presented and results discussed in view of obtaining information how the presence of the co-solvents with strong Lewis base centers influenced redox reactions during the coloring /bleaching changes of ECD.

¹ B. Orel, U. Lavrencic Stangar, A. Surca Vuk, P. Lianos, Ph. Colomban, Mat. Res. Soc. Proc. 725, P7.3 (P7.3.1-P7.3.6) (2002).

² R. D. Rauh, *Electrochim. Acta* 44, 3165 (1999).

 $\label{eq:Fig.1} \begin{array}{ll} Fig. 1 & Cyclovoltammetric response of a hybrid EC \\ device (FTO // WO_3 // ICS-PPG4000 / KI / I_2 / EtOH / \\ AcOH // Pt // FTO) during in-situ resonance Raman \\ measurements. The dotted lines represent the potentials at \\ which the Raman spectra recording started. \end{array}$

Fig. 2 In-situ resonance Raman measurements of a hybrid EC device (FTO // WO₃ // ICS-PPG4000 / KI / I₂ / EtOH / AcOH // Pt // FTO) during CV at a scan rate of 5 mV s⁻¹. Dotted lines indicate separate cycles. The absolute integral intensity of the v_s(I₃⁻) band at 111 cm⁻¹, the absolute background intensity at 200 cm⁻¹ and the relative integral intensity of the v_s(I₃⁻) band at 111 cm⁻¹ are shown. The laser excitation line was 647.089 nm and the power below 5 mW.