Influence of Water on the Electrochromic Properties of Nb₂O₅:Mo, WO₃ and (CeO₂)_x(TiO₂)_{1-x} Sol-Gel Coatings and Electrochromic Devices

D.L. Sun, S. Heusing, M.A. Aegerter*

Institut fuer Neue Materialien gGmbH

Im Stadtwald, Gebaeude 43; D-66123 Saarbruecken

Tel: ++49 (0) 681 9300 317 (226); Fax: ++49 (0) 681 9300 249; <u>*aegerter@inm-gmbh.de;</u>

Water plays an important role in the intercalation and coloration behavior of some electrochromic (EC) materials. This paper focuses on a systematic study of its influence on the electrochemical and optical properties of Nb₂O₅:Mo and WO₃ electrochromic sol-gel coatings and a $(CeO_2)_x(TiO_2)_{1-x}$ ion storage layer, as well as devices made with these layers. The thickness of the coatings were 200 nm for WO₃, 120 nm for Nb_2O_5 :Mo and 200 nm for $(CeO_2)_x(TiO_2)_{1-x}$. The coatings were studied electrochemically in 1 M LiClO₄ in propylene carbonate electrolyte with water content up to 3 wt% by Cyclic Voltammetry (CV) and Chronoamperometry (CA). The potential ranges were -2 V to 1 V, -1.5 V to +2 V and -2.2 V to +1 V vs Ag/AgClO₄ for $(CeO_2)_x(TiO_2)_{1-x}$, WO₃ and Nb₂O₅:Mo layers respectively and the CV scan rate was 50 mV/s.

For $(CeO_2)_x(TiO_2)_{1-x}$ the exchanged charge, which was practically constant from the 50th CV-cycle, was found to increase from 3 mC/cm² (dry electrolyte) up to 11 mC/cm² (3 wt% water in electrolyte). This improvement is important for the coloration of EC-devices built with this counter electrode because its charge capacity is known to be a limiting factor for the transmission change of the devices.

For WO3-sol-gel coatings the exchanged charge and density therefore the change of the optical ($\Delta OD=log(T_{bleached}/T_{colored})$) measured at 550 nm was also higher in wet electrolyte (1 % water) than in dry electrolyte. Moreover it remained rather constant (0.8 -0.7) from the first cycle up to 7000 cycles, while without water, the ΔOD decreases continuously from 0.76 (1st cycle) down to 0.43 (7000th cycle). For both layers these improvements are partly due to an increase of the kinetics of the intercalation and deintercalation of Li⁺ ions with the water content, but a combined intercalation of $\boldsymbol{H}^{\!\!+}$ and Li⁺ ions cannot be ruled out.

The behavior of sol-gel Nb₂O₅:Mo coatings is opposite: The $\triangle OD$ decreased only slightly from 1.0 (1st cycle) to $0.85 \ (3500^{th} \ cycle)$ in dry electrolyte while it strongly decreased from 0.92 to 0.25 in electrolyte with 3 wt% water. The exchanged charges behaved in a similar way. In spite of the different electrooptical behavior of the WO₃ and Nb₂O₅:Mo EC-layers, 5 x 10 cm² EC-devices prepared with them with the configuration glass/ FTO/ EC-layer/ inorganic-organic composite electrolyte/ (CeO₂)_x(TiO₂)_{1-x}/ FTO/ glass exhibited а definitely improvement with the incorporation of water in the composite electrolyte.

With 3 % water in the composite electrolyte the change of the optical density ΔOD at 550 nm remained practically constant from the first cycles: 0.4 for the $WO_{3/}$ (CeO₂)_x(TiO₂)_{1-x} cell and 0.3 for the Nb₂O₅:Mo/ (CeO₂)_x(TiO₂)_{1-x} cell (figures 1a, b). The

devices were successfully switched up to 50000 cycles and 14000 cycles respectively and the devices built with a dry electrolyte presented a lower value of the ΔOD and a definitely shorter lifetime. The better properties exhibited of the EC-devices built with a wet electrolyte are therefore essentially due to the better behavior of the counter electrode, namely a higher charge capacity and a higher reversibility of the intercalation/ deintercalation process.

Figure 1a,b: Change of the optical density Δ OD at 550 nm of EC-devices with the configuration glass/ FTO/ EC-layer/ composite electrolyte/ $(CeO_2)_x (TiO_2)_{1-x}$ / FTO/ glass without and with 3 wt% water in the electrolyte as function of the CA cycle number, whereby the EC-layer is a) WO₃ and b) Nb₂O₅:Mo and the switching properties are a) (-2 V, 120 / +2 V, 120 s) and b) (-2,5 V, 120 s/ +1 V, 120 s).