Host-Guest Complexation Effect on a C_{60}-Porphyrin Light-to-Photocurrent Conversion System
Atsushi Ikeda, a* Tsukasa Hatan, a Toshifumi Konishi b Jun-ichi Kikuchi, a and Seiji Shinkai a
aGraduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan.
bPRESTO, Japan Science and Technology Corporation.

department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

There has been great interest devoted to the development of photocurrent generators consisting of organic electron-donor and/or electron-acceptor couples. These electron-donors or electron-acceptors can be deposited on the electrode surface as monolayers by means of Langmuir-Blodgett (LB) membranes and self-assembled monolayers (SAMs). In these approaches, monolayer systems comprised of covalently-linked donor-acceptor molecules, in the form of dyads and triads, can result in the high light-to-photocurrent conversion values. This high efficiency is attributed to the ability of the donor-acceptor layers to generate the long-lived charge-separated-state with high quantum yields. It is very difficult, however, to covalently-link all of the thin-layer-forming substituent, donor unit and acceptor unit in one molecular system by a synthetic procedure. To find a more expedient and more general means of designing the multilayer photocurrent generator system on the electrode, we have taken advantage of the alternate adosption method (Figure 1a). A hexacationic homoxacalix[3]arene (1)-C_{60} 2:1 complex (2) can be deposited on an indium-tin oxide (ITO) electrode with anionic surface as a monolayer and then anionic 3 can be deposited on the ITO electrode (Figure 1a). The largest advantage of the alternate adsorption method is the easiness of the technique utilizing the self-assembling system without decreasing of a quantum yield.

The preparation of thin films of high surface concentration of donor-acceptor molecules is indispensable to achieve the high conversion efficiency, but it inevitably accompanies self-aggregation of chromophores. After photoactivation, the aggregated donor or acceptor molecules on the electrode will be deactivated by self-quenching. In fact, the high-concentration deposition and self-quenching have always been an antimony problem in the light-to-photocurrent conversion system. It thus occurred to us that the self-aggregation might be suppressed by encapsulation of donor or acceptor in a cavity of macrocyclic host molecules. It was shown by several groups that porphyrin is included in a hydrophobic cavity of cyclodextrin. This fact prompted us to evaluate the insulation effect of cyclodextrin on the conversion efficiency. This paper addresses the data on this attractive working-hypothesis of added cyclodextrin in the C_{60}-porphyrin dyad system (Figure 1b).

![Figure 1 Schematic representation of self-assembled multilayers of 2 (first layer) and 3 or 3-4 complex (second layer) on an ITO electrode.](image)

Photocurrent measurements were carried out for 2 monolayer, 2-3 bilayer, and 2-3-4 bilayer deposited on the ITO electrode. From the action spectra, the photocurrent density for 2-3-4 bilayer is remarkably increased as compared with that for 2-3 bilayer. The quantum yield can be estimated to be 15 and 20% for 2-3 bilayer and 2-3-4 bilayer, respectively, confirming the effectiveness of added cyclodextrin.

In conclusion, the present paper demonstrated that the photocurrent density and the quantum yield in the C_{60}-porphyrin bilayer system are remarkably improved by the addition of cyclodextrin. The achievement of the high quantum yield arises from the isolation of porphyrin units by cyclodextrin utilizing the host-guest interaction.

References