¹³C NMR STUDY OF Ca@C₇₄: CAGE STRUCTURE AND DYNAMICS OF A Ca ATOM INSIDE THE CAGE

Takeshi Kodama, Ryosuke Fujii, Yoko Miyake, Shinzo Suzuki, Hiroyuki Nishikawa, Isao Ikemoto, Koichi Kikuchi, Yohji Achiba Department of Chemistry, Tokyo Metropolitan University Hachioji, Tokyo 192-0397, Japan

So far the isolation of mono-metallofullerenes with C_{74} cage, $Ca@C_{74}[1]$, $Eu@C_{74}[2]$, and $Sm@C_{74}[3,4]$, has been reported. However, there is little experimental information about their cage structures. Thus we isolated $Ca@C_{74}$ and measured its ¹³C NMR spectrum to determine its cage structure experimentally.

The soot containing Ca@C₇₄ was produced by direct current (40A) arc discharge of Ca/C composite rod under a 500 Torr He atmosphere. The fullerenes were extracted by refluxing for 6h with 1,2,4-trichlorobenzene. The isolation of Ca@C₇₄ was accomplished by three-stage high performance liquid chromatography. The ¹³C NMR spectra were measured at 125 MHz in CS₂ solvent with 5% 1,1,2,2-tetrachloroethane-d₂ as an internal lock, or in o-dichlorobenzene-d₄ solvent. Chromium acetylacetonate was used as a relaxant.

Figure 1 shows the temperature-dependent ¹³C NMR spectra of Ca@C₇₄. The symmetry of the C₇₄ cage was found to be D_{3h} because the integrated intensity ratio of the peaks marked with an open circle, a solid circle, and an open square is 6:3:1 and the numbers of them are 4, 4, and 1, respectively. Moreover, inside the cage, the Ca atom should be jumping between some equivalent sites displaced from the center of D_{3h} cage, because the several ¹³C NMR lines sharpened at higher temperature as shown in figure 1. In addition, the activation energy of the jumping motion was determined by analyzing the temperature-dependent ¹³C NMR spectra.

- [1] T. S. M. Wan et al. J. Am. Chem. Soc. 1998, 120, 6806-6807.
- [2] P. Kuran, et al. Chem. Phys. Lett. 1998, 292, 580-586.
- [3] T. Okazaki, et al. Chem. Phys. Lett. 2000, 320, 435-
- 440. [4] T. Okazaki, et al. J. Chem. Phys. 2000, **113**, 9593-9597.

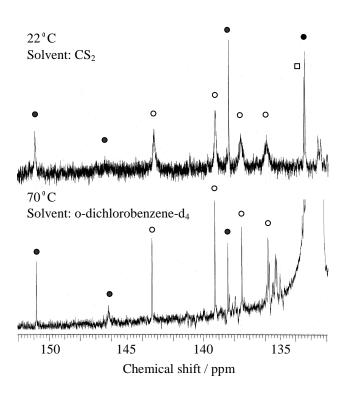


Figure 1. Temperature-dependent ¹³C NMR spectra of Ca@C₇₄. The integrated intensity ratio of the peaks marked with an open circle, a solid circle, and an open square is 6:3:1.