Sensitivity of the Mott transition to noncubic splitting of the orbital degeneracy: Application to NH3 K3C60

Nicola Manini,¹ Giuseppe Santoro,² Andrea Dal Corso² and Erio Tosatti³ ¹Dipartimento di Fisica, Università di Milano and Istituto Nazionale di fisica della Materia Via Celoria 16 Milano I-20133 Italy

²International School for Advanced Studies (SISSA) and INFM/DEMOCRITOS, Unita' di Trieste Via Beirut 4 Trieste I-34013 Italy

³International Centre for Theoretical Physics (ICTP) P.O. Box 586 Trieste I-34014 Italy

Within dynamical mean-field theory, we study the metalinsulator transition of a twofold orbitally degenerate Hubbard model as a function of a splitting Δ of the degeneracy. The phase diagram in the $U - \Delta$ plane exhibits twoband and one-band metals, as well as the Mott insulator. The correlated two-band metal is easily driven to the insulator state by a strikingly weak splitting $\Delta \ll W$ of the order of the Kondo-peak width zW, where $z \ll 1$ is the metal quasiparticle weight. The possible relevance of this result to the insulator-metal transition in the orthorhombic expanded fulleride NH₃K₃C₆₀ is discussed.