FROM MESO-MESO COUPLED DIPORPHYRIN

TO A MOLECULAR WIRE

Atsuhiro Osuka

Department of Chemistry, Graduate School of Science, Kyoto University, CREST, JST (Japan Science and Technology Corporation) Kyoto 606-8502, Japan

Treatment of Zn(II) 5,15-diarylporphyrin with Ag(I) salt in CHCl3 led to the formation of meso-meso coupled diporphyrin.¹ In contrast, *meso-\beta* coupled diporphyrins were formed from the electrochemical oxidation of Ni(II) and Pd(II) 5,15-diarylporphyrins.² The coupling regioselectivities can be understood in terms of the HOMO orbital characteristics; probably A_{2u} for Zn(II) porphyrin and A_{1u} for Ni(II) and Pd(II) porphyrins. Interestingly, oxidation of Ni(II) and Pd(II) porphyrins with $(BrC_6H_4)_3NSbCl_6$ gave doubly *meso-β*-linked diporphyrins by way of singly $meso-\beta$ linked diporphyrin.^{3,5} These fused diporphyrins have enforced planar structures and display red-shifted absorption bands and lowered oxidation potentials. Oxidation of a singly meso-meso linked Cu(II) diporphyrin with $(BrC_6H_4)_3NSbCl_6$, afforded a triply meso-meso, β - β , β - β linked symmetric diporphyrin in good yield, which displays extensively red-shifted absorption band and a lowered oxidation potential.4,5

Synthesis of discrete long *meso-meso* coupled porphyrin arrays has been attempted by repeated doubling reactions, leading to the synthesis of 128-mer whose molecular length exceeds 0.1 μ m in its linear form.⁶ When endphenyl capped *meso-meso* coupled porphyrin arrays were oxidized with DDQ and Sc(OTf)₃, completely planar porphyrin tapes were obtained, which displayed the extremely red-shifted absorption bands which reach in the infrared.⁷ The porphyrin tapes prepared are interesting in light of their extremely extending π conjugated systems.

- A. Osuka, H. Shimidzu, Angew. Chem., Int. Ed. 1997, 36, 135.
- T. Ogawa, Y. Nishimoto, N. Yoshida, N. Ono, A. Osuka, *Angew. Chem. Int. Ed.* **1999**, *38*, 176.
- A. Tsuda, T.; Nakano, A.; Furuta, H.; Yamochi, H.;
 Osuka A. Angew. Chem, Int. Ed. 2000, 39, 558.
- 4 A. Tsuda, H. Furuta, A. Osuka, Angew. Chem. Int.
 Ed. 2000, 39, 2549.
- 5 A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc.
 2001, 123, 10304.
- 6 N. Aratani, Osuka, et al., Angew. Chem, Int. Ed.
 2000, 39, 1458.
- 7 A. Tsuda, A. Osuka, *Science* **2001**, *293*, 79.