Semiconductor-Metal and Semiconductor-Semiconductor Nanoassemblies on Electrode Surfaces

Prashant V. Kamat, Vaidyanathan Subramanian and Shailesh Sharma
Notre Dame Radiation Laboratory
University of Notre Dame
Notre Dame, IN 46556-0579
Tel. 219-631-5411, Fax: 219-631-8068
Email: pkamat@nd.edu

Organized assembly of metal and semiconductor nanoparticles as films provides new ways to design composite nanostructures for light energy harvesting systems [1]. In the present study, we have functionalized gold and CdSe nanoparticles on TiO$_2$ surface with a bifunctional surface linker. Mercaptopropionic acid having two reactive groups (-SH and -COOH groups) serves as a good linker molecule to assemble gold (or CdSe) nanoparticle on nanostructured TiO$_2$ surface. The principle of electrode preparation is illustrated in scheme 1.

Visible excitation of CdSe/TiO$_2$ films in a photoelectrochemical cell exhibit photocurrent generation indicating photoinduced charge transfer between the two semiconductor nanostructures. The gold nanoparticles in the TiO$_2$/Au system can be further functionalized with fluorophores to extend the response into the visible. The electron transfer from the excited fluorophore moiety and the gold nanoparticle can be modulated by applying electrochemical bias. Spectrochemical and photoelectrochemical measurements that demonstrate the role of gold nanoparticle as a charge-transport mediator in such superstructures will be discussed.

Acknowledgments: The work described herein was supported by the Office of the Basic Energy Sciences of the US Department of Energy.

References