High Temperature Structural Studies of HgS and HgSe nanoparticles

Syed B. Qadri, Masaru Kuno, and M. Yousuf

Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375

Abstract

High quality colloidal mercury chalcogenide quantum dots were synthesized using a combination of strong Hg (II) coordinating ligands and precursor phase separation. The structural properties of the $\beta$-HgS and HgSe nanoparticles were investigated by x-ray diffraction as a function of temperature between 300-600 K. At room temperature, nanoparticles having dimensions less than 4.0 nm, showed reduced lattice parameters in comparison to their bulk values. For both HgS and HgSe, the zinc-blende structure remained stable up to 600 K. The particle size increased as a function of increasing temperature. The post heated nanoparticles had their dimensions increased to more than 10.0 nm and consequently bulk lattice parameters.