Enhanced Permeability of Fluorinated Carbon Nanocages for Medicine
Pavel V. Avramov and Boris I. Yakobson
Rice University
6100 Main Street, Houston, TX 77005, USA.

Carbon nanocages (buckyball C_{60} or larger fullerenes and nanotubes) could be convenient shells-carriers for radioactive isotopes and other components for a variety of medical applications (treatment, image-contrast, diagnostics, etc.). However, their utility is principally hindered by the difficulties of incorporation of most of the elemental components: the yield of the desired structures $X@C$ is extremely low. This is due to large activation barriers for penetration inside the cages and is often complicated by the binding of the ions to the π-electrons.

Theoretical analysis indicates that such barriers can be reduced if the π-subsystem of electrons is depleted by the covalently attached fluorine (e.g. in a $C_{60}F_{48}$ as shown in the Fig. 1). We have performed preliminary calculations and evaluation of the potential barrier reduction, which appears to be substantial. For example, calculations show that while the hexagon-center entry of a proton H^+ has a barrier near 6 eV, the similar trajectory barrier for the fluorinated cage is three times lower, near 2 eV. In fact, approximately the same barrier reduction is attained for the “holes” near the hexagon centers of about 1.5 Å size, equivalent to nearly 25% of the cage “surface area”.

This suggests that the yield of the endohedral units $X@CF$ must be much higher than that of non-fluorinated $X@C$. It opens new ways for the efficient synthesis of useful endohedral components by either ion beam irradiation or high-pressure/temperature processing [see for example (1)], following the stage of fluorination that can be achieved by previously described methods (2). Detailed quantum-chemical computations (3) must lead to a more accurate assessment of the yield and required conditions for a series of interesting compositions like $X@CF$ ($X=H$, T, H_2, Li, Co etc.)

Work partially supported by the Nanoscale Science and Engineering Initiative of the National Science Foundation, award number EEC-0118007 (Rice CBEN).

REFERENCES