Chaur-Chi Huang and Kuan-Zong Fung

Department of Materials Science and Engineering, National Cheng Kung University Tainan 70101, Taiwan, Republic of China TEL: 886-6-2756402 FAX: 886-6-2346290 Email: <u>kzfung@mail.ncku.edu.tw</u>

Bi₂O₃ is recognized as the best oxygen ionic conductor. Its high conductivity is highly dependent on its crystal structure. In δ -Bi₂O₃ which exhibits defective fluorite structure, the concentration of oxygen vacancies is as much as 25 mol%. Unfortunately this structure is only stable at high temperature (723~823°C). At temperatures lower than 723°C monoclinic α -Bi₂O₃ was obtained. In alkaline earth doped bismuth oxide systems, δ -phase also transformed rapidly to rhombohedral phase, as described by J. C. Bovin ^[1,2]. It is believed that the amount of oxygen vacancies and the size of doping ions play an important role in the phase transformation of doped Bi₂O₃ system. First of all, Bi_{0.824}Ca_{0.176}O_{1.412} was chosen as the matrix composition which gives rhombohedral phase after calcined at 700°C (figure 1(a)).

The crystal structure and microstructure of samples were examined in aid with XRD, SEM and TEM. The conductivity measurement was conducted using 2-probe DC technique. This rhombohedral tends to react with moisture and has low mechanical strength. It has been shown that the cubic structure of Y_2O_3 doped Bi_2O_3 exhibits better mechanical strength and structural stability against moisture ^[3]. Thus, it is necessary to enhance the stability of cubic phase in CaO-Bi₂O₃ system and ionic conduction of $Bi_{0.824}Ca_{0.176}O_{1.412}$ with various amount of Nb₂O₅ dopant.

Figure 1 shows the XRD trace for $Bi_{0.824}Ca_{0.176}O_{1.412}$ doped with up to 10 m/o Nb₂O₅. With the addition of 4 m/o Nb₂O₅, the reflections of rhombohedral phase significantly reduced. On the contrary, two cubic phases were observed. These two phases are similar to cubic fluorite structure. Thus the addition of Nb₂O₅ enhanced the stability of cubic $Bi_{0.824}Ca_{0.176}O_{1.412}$. The structure stability can be rationalized by the following oxygen filling reaction.

 $V_o^{\bullet \bullet} + Nb_2O_5 \xrightarrow{AO_2} 2Nb_A^{\bullet} + 5O_o^{A}$

In $Bi_{0.824}Ca_{0.176}O_{1.412}$, the formation of rhombohedral phase is due to excess oxygen vacancies. According to reaction (1), the addition of one Nb₂O₅ will fill up one oxygen vacancy and then make the structure more stable. In addition to phase changes, the conductivity of $Bi_{0.824}Ca_{0.176}O_{1.412}$ was also affected by the doping of Nb₂O₅. For undoped $Bi_{0.824}Ca_{0.176}O_{1.412}$, the conductivity was 0.085 S/cm at 800°C. For 6 mol% Nb₂O₅-doped $Bi_{0.824}Ca_{0.176}O_{1.412}$, the conductivity was enhanced to 0.722 S/cm at 800°C as shown in figure 2. It is known that the cubic fluorite phase has a higher conductivity than rhombohedral phase. Therefore, the addition of Nb₂O₅ in rhombohedral $Bi_{0.824}Ca_{0.176}O_{1.412}$ does not only stabilize the high temperature cubic phase, but also enhances the ionic conductivity.

Acknowledgement

This research was supported by the National Science Council, Grant NO. NSC 91-2622-E-006-063-CC3

- J. C. Bovin and D. J. Thomas, *Solid State Ionics*, 3/4, 457-462 (1981)
- J. C. Bovin and D. J. Thomas, *Solid State Ionics*, 5, 523-526 (1981)

 C. -C. Huang and K.-Z. Fung, "Degradation of Rhombohedral (Y_{0.25}Bi_{0.75})₂O₃ Solid Electrolyte" in the Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), the Electrochemical Society, Inc., 2001.

Figure 1. XRD patterns of Nb₂O₅-doped $Bi_{0.824}Ca_{0.176}O_{1.412}$ sintered at 850 °C (undoped sample was sintered at 700°C) for 20h.

Figure 2. Conductivity of Nb_2O_5 doped $Bi_{0.824}Ca_{0.176}O_{1.412}$ plotted as a function of temperature.