ELECTROCHEMICAL IMPEDANCE CHARACTERISTICS OF SOME MEDIUM TEMPERATURE SEMICELLS FOR SOFC

E. Lust, G. Nurk, P. Möller, I. Kivi, S. Kallip, A. Jänes, V. Sammelselg, H. Mändar

University of Tartu, Jakobi 2, 51014 Tartu, Estonia

Solid oxide fuel cells (SOFC-s) are the promising energy production systems for the 21st century because of their high total efficiency, environmental friendliness and utilisation of a variety of the fuel resources (1). Recently, the SOFC with a low-temperature operation (600-700°C) was focused on by several groups. One probable cathode material for low-temperature SOFC is a ceria-type complex oxide La$_{1-x}$Sr$_x$CoO$_{1.5}$ (LSCO), having high electronic and oxide ion conductivities in a wide temperature range (1-3).

In the present study, the electrochemical behaviour of following semielements Ce$_{0.83}$Gd$_{0.17}$O$_1$| L$_{0.8}$Sr$_{0.2}$CoO$_{3.5}$ (Sys 1); Ce$_{0.83}$Sm$_{0.2}$O$_1$| L$_{0.8}$Sr$_{0.2}$CoO$_{3.5}$ (Sys 2) and Ce$_{0.83}$Gd$_{0.17}$O$_1$| L$_{0.8}$Sr$_{0.2}$CoO$_{3.5}$| Ag (Sys 3) at 773 ≤ T ≤ 1173 K and at fixed cathodic polarisations ΔE = 0; -0.05; -0.1; -0.3; -0.5 and -1.0 V vs. Pt| porous Pt | O$_2$ reference electrode has been studied. The L$_{0.8}$Sr$_{0.2}$CoO$_{3.5}$ cathode material and the Ce$_{0.83}$Sm$_{0.2}$O$_1$ (CSO) and Ce$_{0.83}$Gd$_{0.17}$O$_1$ (CGO) electrolytes were prepared by the conventional solid state reaction technique (1-3). A three-electrode assembly was used to study the electrochemical properties of the electrodes.

The complex plane (Z',Z') plots at different T and ΔE (from 0 to -1 V) have been measured in the range of ac frequency 0.01 Hz ≤ f ≤ 100 kHz at 773 ≤ T ≤ 1173 K. In the region 0.01 Hz ≤ f ≤ 10 kHz, at least two arcs, corresponding to two time constants, were observed at T ≤ 873 K and the high-frequency arc (arc 1) is noticeably smaller than the low-frequency arc (arc 2). The shape of the arc 1 depends only slightly on T and the time constant τ depends on T and probably describes the ionisation of adsorbed O$_{ads}$ at the cathode surface. τ depends somewhat on the electrolyte composition, thus, on the TPB characteristics. The decrease in the phase angle δ with T at T > 823 K indicates that the "true" charge transfer process is the rate-determining step at f > 10 Hz (δ = 0 at T ≥ 873 K). With increasing T, the arc 1 disappears.

The shape of the arc 2 depends noticeably on T and ΔE, and becomes more depressed with increasing T, which can be explained by the more resistive behaviour of the cathode | solid electrolyte interface at higher T. The Z'Z'-plots can be simulated by the equivalent circuit, where R_1 is the high-frequency series resistance of the system; CPE$_1$, CPE$_2$ and R$_3$ are the so-called high-frequency and low-frequency constant phase elements and charge transfer resistances, respectively. The fractional exponent $\alpha = 1.0$ and very low values of R_2 for arc 1 indicate that the "true" charge transfer process is the rate-determining step at f > 10 Hz and T < 823 K. $\alpha = 0.5$ for arc 2 of Sys 1 and Sys 2 indicates that CPE$_2$ behaves as a Warburg-type diffusion impedance (4). Thus, CPE$_2$ can be exchanged to the generalised finite Warburg element for a short circuit terminus model. τ for the arc 2 is independent of the electrolyte composition at fixed T and ΔE, and characterises mainly the properties and processes in LSCO. τ noticeably decreases with the increase of T at fixed ΔE, and of negative polarisation at fixed T. Thus, the arc 2 probably characterises the exchange reaction of oxygen from the gas phase into the solid (i.e. electroreduction of O$_{ads}$ to O$_{ads2}$) and the slow diffusion of O$_{ads2}$ to TPB in the solid cathode material.

The polarisation resistance values, depending on ΔE, T and electrolyte, have been established. The activation energy calculated decreases slightly with the increase of |ΔE|. The activation energy is higher for Sys 2 than for Sys 1. The charge transfer coefficient of the cathode reaction $\alpha = 1.0$ has been obtained from the Tafel-like overvoltage η, logi-plots at T > 823 K, indicating the mass transfer limited process in the cathode material. The exchange current density, depending on the system studied, increases with T.

References