R&D for low temperature solid oxide fuel cells

Bin Zhu^{a,e}, Zi-Feng Ma^b, Juncai Sun^c, Zhigang Zhu^d, Zongqiang Mao^{d,e}

 ^aDepartment of Chemical Engineering & Technology, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
^bDepartment of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
^cInstitute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
^d China Association for hydrogen Energy, Tsinghua University, Beijing, P. R. China
^eGöta Technology Developer International, S-171 60, Solna, Sweden

A Swedish-Chinese research framework has been established targeting for low temperature solid oxide fuel cells (LTSOFCs, 300 - 650°C) based on new material developments on electrolyte and electrodes. These new materials have been developed based on ceria-based composites, where the composite electrolytes have excellent ionic conductivity of 0.01 to 1 Scm⁻¹ at temperatures 400 to 650°C. Corresponding to the electrolytes, various new compatible electrode materials have been investigated, especially nickel-free oxides and copper-based compounds. These new electrolytes and electrodes were used and demonstrated performances between 100 to 1000 mWcm^{-2} in the temperature range between 400 and 650°C. Based on these results overall engineering work on the LTSOFC technology, construction and stack has been widely carried out. This paper reports recent progress and results on the overall LTSOFC R&D.