Electrode Reaction Kinetics at La$_{1-x}$A$_x$MnO$_3$(γ) (A=Sr, Ca) / YSZ Interface

Kenji Yasumoto,a Junichiro Mizusaki,b Hibihi Itoh,c Shaorong Wang,a Hiroaki Tagawa,a and Masayuki Dokyaa

a Smart Materials Science Department, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan

b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

c Department of Applied Physics, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

(Received 13 August 2003; accepted 15 October 2003)

Lanthanum manganite, an air electrode material of solid oxide fuel cells, is well known for its complicated nonstoichiometry, which depends upon oxygen partial pressure. This nonstoichiometry has a relationship with electrode reactivity as it affects oxygen activation step and/or oxide ion sink, etc (1,2). In addition, the cell volume of lanthanum manganite has a dependence on the nonstoichiometry. We report the relation between the cell volume (3) and the cathode reactivity, and the electrode reaction kinetics based on measurements of the crystal structure with X-ray diffraction and the steady-state polarization and the complex-impedance of the electrode system, O$_2$(g)/La$_{1-x}$A$_x$MnO$_3$(γ)/YSZ, with P$_{O2}$ in the range of 10$^{-10}$ Pa and temperature at 873-1273 K.

The cathode material, La$_{0.6}$Sr$_{0.4}$MnO$_{3.95}$, was synthesized by the Pechini method and used for different cells LSM-1A and B. Powder X-ray analysis showed a single phase of the perovskite type. The complex-impedance under a polarized state was measured for LSM-1B. For the electrolyte, sintered YSZ (8 mole percent Y$_2$O$_3$) pellet was used. The electrochemical measurement was done with a three-terminal method. The complex impedance and steady-state polarization were measured using a frequency analyzer, a potentiostat, and a personal computer in O$_2$/Ar atmospheres of P$_{O2}$ = 10$^{-10}$ Pa at temperatures of 873-1273 K. Electrical measurements for La$_{0.55}$Sr$_{0.45}$MnO$_{3.9}$ (4) and La$_{0.9}$Ca$_{0.1}$MnO$_{3.9}$ (5) were carried out by same method and were reported elsewhere. The crystal structure was measured for La$_{0.6}$Sr$_{0.4}$MnO$_{3.95}$ and was reported elsewhere (3).

Up to now, the rate determining process for the electrode reaction at the porous La$_{1-x}$A$_x$MnO$_3$(γ)/YSZ electrode has not been definitely clarified yet. However the current-potential relations (6) by many electrode measurements at the porous La$_{1-x}$A$_x$MnO$_3$(γ)/YSZ electrode obey the Butler-Volmer equation for electrochemical reactions, Eq. 1, and the chemical processes, Eq. 2, (6),

\[i = k(P_{O2})^{1/2} \exp(2F\eta_e/RT) - \exp(-2F\eta_e/RT) \]

\[i = k (a_{O2}^{1/2} - P_{O2}(a_{O2}^{1/2})^n) \]

Here, k is the rate constant, F (C/mol) is Faraday constant, \(\eta_e \) (V) is electrode over-potential, \(R/JK \) is gas constant, \(T/K \) is temperature, and \(a_{O2} \) is the oxygen activity in YSZ at the electrode/electrolyte interface. Eq. 1 and Eq. 2 can become the same equation as reported before (6).

The \(\sigma_e \) is defined at the equilibrium state of the electrode with gas phase as \(\sigma_e = (d\delta_e dE_{electrolyte})/dE_{electrolyte} \). From Eq. 1 and 2, we obtain:

\[\sigma_e = (AF/RT)P_{O2}^{1/2} \]

By fitting the experimental data of the steady-state polarization curves into Eq. 1 and the complex-impedance into Eq. 3, we obtain the rate constants, k. The k depends on the unit cell volume, \(V_{cell} \) of La$_{1-x}$Sr$_x$MnO$_3$. However, because we don't have the data of \(V_{cell} \) for La$_{1-x}$Ca$_x$MnO$_3$, we did not discuss LCM-4 further. \(k \) data obtained without gas diffusion depends on \(V_{cell} \) as shown for LMS-1B in Fig. 1. When \(V_{cell} \) increases, \(k \) increases in a proportionality relation. However, for low temperatures, the data has a scattering tendency and hysteresis, because the relaxation of oxygen nonstoichiometry in crystal lattice needs a long time and it depends on not only oxygen partial pressure but also electrode potential. As another cause, for low temperature, the increase of the surface coverage of adsorbed, O$_2$, influences the k of the O$_2$(g)/YSZ type cathode (7). Therefore we did not use the data of low temperature for fitting in Fig. 1.

![Figure 1. Unit Cell Volume dependence of log k for La$_{1-x}$Sr$_x$MnO$_3$-A (LSM-1A)/YSZ at 873 – 1273 K.](image)

From the relation of \(V_{cell} \) vs. log k, we observed that the tangent of \(V_{cell} \) vs. log k has a same value for same composition and the intercept may be different for different cells. We think that the intercept is a constant depending on amount of electrode reactivity sites, and length of three-phase boundary. Therefore using the average value of the slope for same electrode composition, we obtained a general equation for each electrode composition as shown in Table 1.

| Table 1. The reaction rate equation for La$_{1-x}$Sr$_x$MnO$_3$/YSZ. |
|-----------------|---------------------|
| \(k \) = \exp((1.892xV_{cell}/C)(P_{O2}^{1/2}/(exp(2F\eta_e/RT)-exp(-2F\eta_e/RT))) \) |
| \(k \) = \exp((1.505xV_{cell}/C)(P_{O2}^{1/2}/(exp(2F\eta_e/RT)-exp(-2F\eta_e/RT))) \) |