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In today’s electrochemistry, it is no longer
considered adequate to base conclusions on such sparse
information as that provided by the peak separation in cyclic
voltammetry.  Trustworthy results can come only by
comparing the entire experimental results with model
predictions.  Thus the ability to model elaborate electro-
chemical systems with precision is vital.

There are three routes for modelling voltammetric
experiments.  The best is purely mathematical analysis,
though unfortunately this approach is tractable only for
simple systems.  The most popular route is digital
simulation, a sophisticated technique in which the governing
equations are approximated and solved arithmetically by
computer.  This approach requires elegant programming and
is accessible to most electrochemists only by reliance on
“canned” programs.  This presentation is about a third route
– semianalytic modelling – that has the precision of the
mathematical approach, while requiring only modest
programming skill.

Semianalytical methods employ a combination of
algebraic and numerical analysis.  The concept is not new;
Nicholson and Shain’s seminal work (1) was semianalytical.
The version presented here is named “convolutive
modelling” (2,3) and is an extension of the semiintegration
approach (4).  Briefly, the principle is to treat the time-
dependence of the voltammetry numerically, but all other
aspects � including transport and reactions � analytically.

A voltammetric experiment involves (a minimum
of) three distinct processes: (a) The transport of the
electroactive substrate S to the electrode surface, possibly
involving some homogeneous chemical reaction along the
way.  (b) The transfer of electrons to or from the substrate,
to form the  product P, a process than may be reversible,
quasireversible or irreversible.  (c) The transport of the
product back into the solution, possibly accompanied by a
chemical transformation.  These three processes are “in
series” inasmuch as (c) must be preceded by (b), to which
in turn (a) is a necessary precursor.  Because of the series
relationship of the three processes, it follows that, if the
factors influencing each of the processes separately are
known, then the net effect of all three processes together is
predictable.  In fact, the current I(t) is given by the equation
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where Ia(t) is the current that would flow if processes (b)
and (c) imposed no kinetic or transport constraint.  Ib(t) and
Ic(t) have corresponding significances.

Let kf(t) and kb(t) be the heterogeneous rate
constants of the electrode reaction
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that converts the substrate into the product.  If process (a)
imposes no constraint, then the concentration of S at the
electrode surface will equal its bulk value .  Likewise ifb
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the product P were initially absent and process (c) imposed
no constraint, its concentration at the electrode surface
would remain zero and the backward reaction would be
unimportant.  Therefore, in this hypothetical circumstance,

the current would equal , and accordinglyb
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The form adopted by Ia(t), the current that would
flow if processes (b) and (c) imposed no constraint, would
depend on details of the transport mechanism, the cell
geometry, and on the preceding chemical reaction, if any.
For linear diffusion in the absence of homogeneous
reaction, the following formula (5) would apply
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where  denotes the operation of convolution, for which∗
simple and efficient algorithms exist (6).  In other
circumstances different convolutions could apply, all of
which may be subsumed in the generic formula
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where S(t) is a function available from an existing “library”
of such functions or, if need be, S(t) can be found by
Laplace-transform techniques.

On turning to the Ic(t) term, note that, in the
absence of kinetic or transport constraints arising from
processes (a) and (b), the concentration of product P at the
electrode surface would be given by a nernstian term

, where K(t) = kf(t)/kb(t).  Hence, genericallyb
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where P(t) is some function of time, available from the
library, dependent on the transport and geometric factors, as
well as on any succeeding chemical reactions.  For example
(2),  for linear diffusion with a{ } P( ) exp /P t kt D t= − π
following reaction of rate constant k.

Putting equations [3], [5] and [6] into [1] leads to
the universal “master equation”
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which can be used directly to calculate the voltammetric
current for any voltage program.  Several examples of its
application will be presented.
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