Preparation and Characterization of Bi₂Te₃ films by Electrodeposition Makoto Takahashi, Yasuhiko Muramatu, Hidehiko Mori, Shoji Sato, Akira Nishiwaki* and Koichi Wakita* Department of Applied Chemistry, Chubu University *Department of Electronic Engineering, Chubu University Matsumoto-cho 1200, Kasugai, Aichi 487-8501, Japan ## Introduction Bismuth telluride (Bi₂Te₃) and the Bi-Te solid solution have been of considerable interest as thermoelectric materials. We have reported the preparation of Bi₂Te₃ and its solid solution films by electrodeposition from the nitric acidic solution containing Bi(NO₃)₃ and TeO₂ [1,2].In this system, there are two problems, (1)it is difficult to prepare the electrolytic solution, because Bi³⁺ ion is easily hydrolyzed in the aqueous solution, (2)the film composition can be controlled only by the composition of electrolytic solutions. Using the Bi³⁺-EDTA complex, we try to solve above problems. # Experimental Bismuth telluride and its alloy films were electrodeposited from aqueous solutions containing various concentrations of Bi³+-EDTA complex and TeO₂, pH=1.0 — 0.1, on Ti sheets. The usual three-electrode cell was used and the electrode potential was controlled using a potentiostat. X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and Hall effect measurement were carried out for the characterization of films. # Results and Discussion The current-potential relations observed in various solutions; (a) $1.5\,\mathrm{mM}$ TeO₂, (b) $2.0\,\mathrm{mM}$ Bi³⁺-EDTA, (c) $1.5\,\mathrm{mM}$ TeO₂ + $2.0\,\mathrm{mM}$ Bi³⁺-EDTA, are shown in Fig. 1. In Fig. 1(c), the large cathodic current began to flow at potentials more negative than $-0.05\mathrm{V}$ and the limiting current observed at potentials between -0.20 and near $-0.50\mathrm{V}$ is equal to the sum of the limiting currents observed for the TeO₂ and Bi³⁺-EDTA complex solutions. These facts implied that the underpotential deposition of Bi³⁺ -EDTA complex to Bi-Te alloy occurred. And these results indicate that the composition and electric properties of films can be controlled by the electrode potentials [3]. Fig.1 Current-potential curves (a) ◆: TeO₂ 1.5 mM (b) ■: Bi-EDTA 2.0 mM (c) \blacktriangle : TeO₂ 1.5 mM +Bi·EDTA 2.0 mM ## Acknowledgment This work was supported by grants from the Nagai Foundation for Science and Technology, and from the High-Tech Research Center Establishment Project of Ministry of Education, Science, Sport and Culture. #### References - [1] M. Takahashi, Y. Oda, et. al.,J. Electrochem. Soc., 140, 2550(1993) - [2] M. Takahashi, Y. Katou, et. al., Thin Solid Films, 240, 70(1994) - [3] M. Takahashi, Y. Muramatsu, et. al., - J. Electrochem. Soc., (in press)