Solvothermal Synthesis and Photoluminescence of Y₂O₂S:Tb Nanophosphors Glinka Yen and Teng-Ming Chen Department of Applied Chemistry National Chiao Tung University, Hsinchu, Taiwan 30050 E-mail:tmchen@mail.nctu.edu.tw

 Y_2O_2S :Tb has been known to be an X-ray phosphor used in practical X-ray intensifying screens and a green phosphor for CRT displays. Synthesis of Y_2O_2S :Er nanoparticles via flame spray pyrolysis and fluidized-bed sulfurization methods were reported by Bickmore et al.¹ and Niedbala et al.², respectively. However, there has not been any investigation on the synthesis and luminescence of Y_2O_2S :R (R = Eu, Tb) nanophosphors reported in literature.

In an attempt to investigate the quantum confinement effect on the luminescence and potential applications of Y_2O_2S :Tb nanophosphor, we have synthesized Y_2O_2S :Tb nanophosphors using a solvothermal route at 150 °C or lower in ethylene diamine or methanol solution. Interestingly, we have observed that the morphology of nano- Y_2O_2S :Tb synthesized from solvothermal reactions is strongly dependent of the solvents used.

The effect of synthetic temperature on the formation of Y_2S_2O :Tb nanoparticles were first investigated and the results are shown in Fig. 1. As- prepared nano- Y_2S_2O :Tb was found to be amorphous and decent crystallinity appears only when annealed at 500°C under H_2S atmosphere, as indicated by the XRD profiles.

Shown in Fig. 2 is the TEM micrograph for nano-Y₂S₂O:Tb synthesized solvothermally from a solution of ethylene diamine at 150°C and further annealed at 500°C under H₂S for 6 hr. Nanorods of Y₂S₂O:Tb with high aspect ratio (diameter: 40 nm, length:1.6 μ m) were observed. On the other hand, those prepared from methanolic solutions were found be nearly spherical with size of *ca*. 20 nm.

The quantum confinement effect on the luminescence intensity was clearly observed in PLE spectra shown in Fig. 3. A blue shift of 5 nm in the absorption band attributed to Tb^{3+} 4f \rightarrow 5d transition has been observed for nanocrystalline as compared to bulk Y_2S_2O :Tb. The observation has been rationalized by quantum size and surface effects.

The effect of surface capping on the luminescence intensity for Y_2O_2S :Tb has also been investigated by treating Y_2O_2S :Tb nanoparticles with allylamine (Ala) as a capping agent. We have discovered that well-crystalline bulk Y_2O_2S :Tb exhibits much stronger luminescence than Ala-capped nano- Y_2O_2S :Tb, whereas the pristine sample exhibits the weakest. We have demonstrated that the luminescence efficiency of nanophosphors can be effectively improved by surface capping.

References

C. R. Bickmore et al. J. Europ.Ceram. Soc. 18, 287 (1988).
R. S. Niedbala et al. Proc. SPIE 3913, 1605 (2000).

Fig. 1 XRD profiles showing the effect of annealing temperature on the formation of Y_2O_2S :Tb nanoparticles (as-prepared Y_2O_2S :Tb is poorly crystalline).

Fig. 2 The TEM micrograph for Y2O2S:Tb nanophosphor.

Fig. 4 Comparison of PL spectra for (a) bulk, (b) Ala-cappedand (c) pristine Y_2O_2S :Tb nanophosphor. 老師,這是 YOS 的圖

TEM	相對應 ED	相對應 scale
33	34	1cm=1/3um
35	36	lcm=1/5um
37	38	1cm=1/3um

實驗條件

- 1. 與學長條件只差在溶劑之不同,本實驗使用 en 為溶劑,除 此之外,另使用 allyamin 處理過.
- 2. 此 cpd 為已經通硫化氫 500 度 6 小時 anneal 過的產物.

ps因為剛拿到照片,所以 ed 圖還沒 index

之後 index 後再給老師完整版