Photoluminescence, Thermoluminescence and Energy Transfer Process in Sm$^{3+}$:ZrO$_2$ Nanocrystals

E. De la Rosa-Cruz*, L.A. Díaz-Torres, R. A. Rodríguez-Rojas, M.A. Meneses and O. Barbosa-García
Centro de Investigaciones en Optica, A.P. 1-948, León, Gto, 37150 México.
P. Salas
Instituto Mexicano del Petroleo, Eje Central Lázaro Cárdenas 152, D.F. 07738 México.
M. Barboza-Flores
Universidad de Sonora
Centro de Investigación en Física
P. O. Box 5-088, Hermosillo, Sonora 83190 México

*Corresponding author: elder@cio.mx

Abstract
The photoluminescence, thermoluminescence and crystalline structure characterization of undoped and several samarium doped ZrO$_2$ samples are reported. Strong fluorescence emission produced by the transitions $^4G_{5/2}$→$^6H_{5/2,7/2,9/2}$ of Sm$^{3+}$ was obtained by the excitation of the host at 320 nm. The energy transfer process from the host to the samarium ion was confirmed by the analysis of the ZrO$_2$ fluorescence decay curve. It is shown that the content of the active ions stabilizes the tetragonal structure of ZrO$_2$ at 1000°C, being 73% for 2 mol% Sm$_2$O$_3$ doped and 3% for undoped samples. The dependence between the fluorescence emission and the crystalline structure is discussed. Beside the interesting results here presented, the excellent chemical and photochemical stability of nanocrystalline zirconium oxide as well as its low phonon energy suggest a large potential for a number of application such as active optical windows, new generation television screen, dosimeter and lighting source.

Acknowledgments: This work was supported by CONACyT, México through grant G34629-E and Ph.D. scholarship for R.A. Rodríguez-Rojas.

BIBLIOGRAFÍA

Figure 1. Energy diagram of the Sm$^{3+}$ observed absorption band and the band gap of the host for the tetragonal and the monoclinic structure. It is also described the three channels of LRS relaxation, the non-radiative energy transfer to the Sm$^{3+}$ ions, the non-radiative energy transfer to the ETS and the luminescent relaxation.

Figure 2. Fluorescence emission of undoped and doped samples (1.5 mol% Sm$_2$O$_3$) excited at 320 nm.