Energy transfer in NaGdF₄: Pr³⁺, Eu³⁺ under vacuum ultraviolet excitation T. Hirai and N. Ohno Osaka Electro-Communication University Neyagawa 572-8530, Osaka, Japan > S. Hashimoto Osaka Women's Univeristy Sakai 590-0035, Osaka, Japan S. Sakuragi Union Material Inc. Kitasouma 320-1602, Ibaragi, Japan Several groups have actively researched fluoride phosphors that efficiently convert vacuum ultraviolet (VUV) light generated by Xe dimer (Xe₂) discharge (wavelength ~172 nm) into visible (VIS) or ultraviolet (UV) light. Wegh *et al.* reported that Eu³⁺ and Gd³⁺ ions in LiYF₄ absorb the VUV light at around 170 nm due to the *f-f* transitions, and yield red luminescence (614 nm) and UV luminescence (311 nm), respectively [1]. Unfortunately, the conversion of the VUV light in the Eu³⁺ and Gd³⁺ ions is unlikely to be efficient, since the absorption of the VUV light by those ions should be weak because of the dipole-forbidden *f-f* transitions. One of ideas to solve the problem is that, into the fluorides doped with activated ions such as Eu³⁺ and Gd³⁺ ions, one introduces certain ions called sensitizers that strongly absorb the VUV light and efficiently give the absorbed energy to the activated ions. Pr³⁺ ions are expected to act as suitable sensitizers, because strong absorption of the VUV light generated from the Xe₂ discharge (~172 nm) is possible due to the dipole-allowed f-d transition. In fact, it has been found in YF₃: Pr³⁺, Gd³⁺ phosphors that the Pr³⁺ ions absorb the VUV light (~180 nm) and give the absorbed energy to the Gd3+ ions, yielding the UV luminescence (311 nm) [2]. On the other hand, it has been reported that, in NaGdF₄: Ce³⁺, Eu³⁺ phosphors, the Ce³⁺ ions absorb UV light (~250 nm) due to the f-d transitions and the absorbed energy is transferred to the Eu³⁺ ions through the sublattice formed by the Gd³⁺ ions [3]. In the present study, we have examined whether the energy transfer from the Pr3+ ions to the Eu³⁺ ions through the Gd³⁺ sublattice occurs or not in NaGdF₄: Pr³⁺, Eu³⁺ phosphors. On the right-hand side of Fig. 1 are shown luminescence spectra of (a) NaGdF₄, (b) NaGdF₄: Pr^{3+} , (c) NaGdF₄: Eu^{3+} and (d) NaGdF₄: Pr^{3+} , Eu^{3+} at room temperature. The excitation was made by an ArF excimer laser (193 nm). The spectra on the left-hand side show excitation spectra for the luminescence lines denoted by the arrows. Measurements of the excitation spectra were carried out with the use of synchrotron orbital radiation (UVSOR facility, Institute for Molecular Science, Okazaki, Japan). In the luminescence spectra of NaGdF₄ and NaGdF₄: Pr^{3+} (Fig. 1(a) and (b)), a prominent luminescence line is observed at 311 nm. This luminescence line is attributable to the f-f transition from $^6P_{7/2}$ state to $^8S_{7/2}$ ground state in the Gd^{3+} ion. One can see from the results of the excitation spectra that there appear excitation bands at around 180 nm in NaGdF₄: Pr^{3+} , unlike the case of NaGdF₄. The excitation bands originate from the f-d transitions in the Pr^{3+} ion. This result indicates that the Gd^{3+} sublattice can accept the absorbed energy from the Pr^{3+} ion. In the luminescence spectra of NaGdF₄: Eu³⁺ and NaGdF₄: Pr³⁺, Eu³⁺ (Fig. 1(c) and (d)), a number of luminescence lines can be seen in the VIS region. Almost all the luminescence lines arise from the *f-f* transitions of the Eu³⁺ ion. The noticeable luminescence line at 615 nm is attributed to the transition from ⁵D₀ to ⁷F₂ state in the Eu³⁺ ion. In the excitation spectrum of NaGdF₄: Pr³⁺, Eu³⁺, extra excitation bands can be observed at around 180 nm, as contrasted with that of NaGdF₄: Eu³⁺. The excitation bands are surely due to the *f-d* transition of the Pr³⁺ ion. Accordingly, the results show the *f-d* absorption in the Pr³⁺ ion results in the VIS luminescence of the Eu³⁺ ion via the Gd³⁺ sublattice. The energy transfer process from the Pr^{3+} ions to the Eu^{3+} ions through the Gd^{3+} sublattice in $NaGdF_4$: Pr^{3+} , Eu^{3+} will be discussed in detail. The results of $NaGdF_4$: Tb^{3+} , Eu^{3+} will be also presented. [1] R.T. Wegh, A. Meijerink, R.-J. Lamminmäki and J. Hölsä, J. Lumin., 87-89, 1002 (2000). [2] H. Yoshida, M. Minamoto, M. Hayashi, S. Sakuragi, T. Hirai and S. Sakuragi, Europ. Patent Appl., EP1067166. [3] H.S. Kiliaan, J.F.A.K. Kotte and G. Blasse, Chem. Phys. Lett., 133, 425 (1987). Fig. 1. Luminescence spectra (300-750 nm) excited with an ArF excimer laser (193 nm) and excitation spectra (100-300 nm) for the luminescence lines denoted by the arrows in (a) $NaGdF_4$, (b) $NaGdF_4$: Pr^{3+} , (c) $NaGdF_4$: Eu^{3+} and (d) $NaGdF_4$: Pr^{3+} , Eu^{3+} at room temperature.