SPECTROELECTROCHEMICAL AND THEORETICAL STUDY OF THE REDOX ACTIVATION OF ANTHRAQUINONE ANTITUMORAL DRUG MITOXANTRONE

MIRELA ENACHEa, ELENA VOLANSCHIB

DEPARTMENT OF PHYSICAL CHEMISTRY, UNIVERSITY OF BUCHAREST, BLVD. ELISABETA 4-12, RO-70346, BUCHAREST, ROMANIA,
a e-mail: menache@chimfiz.icf.ro
b e-mail: volae@gw-chimie.math.unibuc.ro

Mitoxantrone (Fig. 1) is an aminoanthraquinone, structurally related to doxorubicin – an anthracycin antibiotic, used as an antitumoral drug due to its interaction with DNA (1, 2). However, besides their benefic action, these drugs possess also an undesirable toxicity. The generally accepted mechanism for this process implies the mono or bielectronic reduction of the drug with the appearance of intermediate species which may mediate the electron transfer to molecular oxygen, forming the superoxide anion radical and other reactive oxygen species, responsible for the cellular damage and cardiotoxicity (3 - 5). This process is usually called “reductive activation” of the drug.

The aim of the present study is to investigate the oxido-reduction behaviour of mitoxantrone (represented as AH2, due to the presence of the dissociable phenolic groups) in protic (phosphate buffer) and aprotic media (dimethylsulfoxide, DMSO) by coupled electrochemical and spectral techniques, in order to identify the intermediate species and to examine the possibility of electron transfer from the different intermediates to molecular oxygen.

The cyclic voltammetry at stationary and rotating platinum disc electrode (RDE) in the range 0 ÷ -1.7 V point out in aprotic media two successive waves at ~0.7 V and ~1.52 V, corresponding, according to the usual electrochemical criteria, to the quasireversible mono and bielectronic waves. The reduction step shows a new or oxidation. If the scan is started by oxidation (Fig. 2), a different wave is visible around –0.3 V, and a new or oxidation. If the scan is started by reduction (Fig. 2), a different wave is visible around –0.3 V, and a new wave is assigned to a species resulting from the bielectronic oxidation of the drug, i.e. the tetraquinone (A).

In order to get a deeper insight into the redox mechanism of mitoxantrone, optical spectra were performed during the chemical (tetrabutylammonium hydroxide, TBAOH) and electrochemical oxido-reduction using in-situ techniques. Similitude of the results of the chemical and electrochemical reduction indicate an analogous action of the electrogenerated base and chemical base and allows the identification of the following intermediate species: AH2–, AH2–, A–. Electrochemical oxidation of the previous reaction mixture recovers the initial compound and leads finally to the tetraquinone (A). The general mechanism of the oxido-reduction of mitoxantrone consists of a sequence of electron and proton transfer reactions. Semiempiirical AM1 MO calculations were performed in order to rationalise the experimental data and to evidence which are the electronic structural features implied in the redox reactivity, as well as to see if the reductive activation of molecular oxygen by the reduction intermediates is possible. Relevant electronic parameters used in the discussion of reactivity in redox process are: the absolute (vertical) and adiabatic ionization potentials and electronegativities. Analysis of the energetics of the different reduction and oxidation steps shows that the anthraquinone moiety is responsible for the redox properties of the drug and supports the proposed reaction mechanism. The reactivity towards molecular oxygen was examined for both ground (Σg) and singlet (Δg) states of oxygen. The results point out smaller tendency to reductive activation of mitoxantrone as against doxorubicin and epirubicin, in agreement with its lower cardiotoxicity.

Fig. 1 Chemical formula of mitoxantrone.

Fig. 2 Cyclic voltammograms of mitoxantrone (1.34x10⁻⁴M) in DMSO, with initial oxidation sweep, deaerated media, sweep rate of 200 mV/s.

REFERENCES