Electrochemistry of Myoglobins Reconstituted with Symmetric Protoheme-III and Protoheme-XIII

Isao Taniguchi, Yasuhiro Mie , Georges P-J. Hareau, and Tadayuki Uno*

Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan *Faculty of Pharmaceutical Sciences, Kumamoto University 5-1, Oe-honmachi, Kumamoto, 862-0973, Japan

asymmetric In nature, protoheme, protoheme-IX (Fig. 1), is a cofactor molecule of a heme protein such as myoglobin (Mb), of which function is known to be oxygen storage in its reduced state in mammalian muscles. The asymmetric protoheme-IX generally takes two (normal and inverted) orientations that differ by 180° rotation to the \Box - \Box meso carbon axis in Mb. On the difference in function between Mbs with protoheme-IX in normal and inverted orientations, opposite conclusions have been given: on the one hand, Mb with inverted orientation was reported to exhibit 10-fold higher O₂ affinity than the normal Mb [1], and the other is that such a difference is negligibly small [2]. To solve such a problem, use of symmetric heme would give us a useful insight. Recently, we have succeeded to synthesize the two symmetrical regioisomers of protoheme-IX, i. e., protoheme-III and -XIII [3]. These symmetric hemes have only one orientation in Mb because of which inverted orientation is the same as the normal one.

In the present study, protoheme-IX was replaced by the symmetric protoheme, protoheme-III or –XIII, and structural, functional and electrochemical properties of reconstituted Mbs have been examined.

The resonance Raman spectra of native and reconstituted Mbs in a 0.1 M phosphate buffer solution (pH 7.0) suggested that the proto-III and proto-XIII Mbs in oxidized forms showed a typical high-spin state, suggesting their aquomet forms (a water molecule is coordinated to the heme iron as an axial ligand) at a neutral pH region like native Mb.

The proto-III and proto-XIII Mbs showed well-defined reversible redox waves at an In2O3 electrode with the highly hydrophilic surface in a 0.1 M bis-Tris buffer solution (pH 6.5), as in the case of native Mb [4]. The E^{0} , values,

estimated as the midpoint of anodic and cathodic peak potentials of the quasi-reversible redox waves, were -145 mV for proto-III Mb, -160 mV for proto-XIII Mb and -140 mV vs. Ag \square AgCl \square Sat. KCl for native Mb. Since the increase in the exposure of the heme moiety to the solvent is known to cause the negative shift of E^{0} , and according to the suggested equation $(E^{0}, \text{ shifts by } -15 \ (\% \text{ exposure}) \text{ mV} \ [5])$, ca. 1 % increase in exposure of the heme for proto-III Mb as gested compared with proto-XIII Mb may be a possible reason for the change in redox potential.

The formal heterogeneous electron transfer rate constants, k^{0} , were estimated by using a digital simulation technique for the observed voltammograms to be ca. 5.7 (± 0.5) x 10⁻⁴ cm s⁻¹ for proto-III Mb, 7.0 (± 0.5) x 10⁻⁴ cm s⁻¹ for proto-XIII Mb and 6.5 (± 0.5) x 10⁻⁴ cm s⁻¹ for native Mb.

In 0.1 M phosphate buffer solution at pH 7.0 from the titration curve showed the oxygen binding constants (K_{02}) for the equation (deoxy Mb + O2 = oxy Mb) were 1.2 (± 0.3) x 10⁶ M⁻¹ for proto-III Mb, 1.0 (± 0.3) x 10⁶ M⁻¹ for proto-XIII Mb and 7.9 (± 0.3) x 10⁵ M⁻¹ for native Mb. The observed K_{O2} value for native Mb in the present study was in good agreement with the reported value (7.5 x 10⁵ M⁻¹) (estimated by the different method).

At pH 7.0 and 35 °C, the observed firstorder rate constants (k_{auto}) for the auto-oxidation of heme iron were calculated to be 8.1 (± 0.5) x 10^{-5} s⁻¹ for proto-III Mb, 6.5 (± 0.5) x 10^{-5} s⁻¹ for proto-XIII Mb and 7.9 (± 0.5) x 10^{-4} s⁻¹ for native Mb.

The present results strongly indicate that the difference in symmetry for the heme structure gives no significant change in Mb function.

References

- Livingstone, D. J., Davis, L. N., La Mar, G. N., and Brown, W. D. (1984) *J. Am. Chem. Soc.*, **106**, 3025–3026.
- Light, W. R., Rohlfs, R. J., Palmer, G., and Olson, J. S. (1987) *J. Biol. Chem.*, 262, 46–52.
- Hareau, G. P.-J., Neya, S., Funasaki, N., and Taniguchi, I. (2002) *Tetrahedron Lett.*, 43, 3109–3111.
- 4. Taniguchi, I., Watanabe, K., Tominaga, M., and Hawkridge, F. M. (1992) *J. Electroanal. Chem.*, **333**, 331–338.
- 5. Stellwagen, E. (1978) *Nature*, **275**, 73–74.