ACTIVATION OF H₂ EVOLUTION BY MICRO- TO NANOSIZED COMPOSITE ELECTROCATALYSTS

E. Guerrini, I. Bianchi, S. Trasatti*

Department of Physical Chemistry and Electrochemistry University of Milan, Via Venezian 21, 20133 Milan, Italy

The activity of electrodes can be modulated using different, intimately mixed components. In this work we report on studies of H_2 evolution on three different electrode systems:

- 1) $RuO_2 + RhO_x$ in acid solution;
- 2) $Co_3O_4 + IrO_2$ in alkaline solution;
- 3) Ru on Ni in alkaline solution.

Rh+Ru oxide electrodes were prepared by thermal decomposition at 400 °C of RuCl₃ + RhCl₃ over all the composition range. XPS analysis showed that the surface is enriched with the Rh phase. Since pure RhO_x is more active than RuO₂ [1,2], the activity of RuO₂ increases as RhO_x is added, reaching a plateau at about 30% Rh content, with evident economic advantage due to the high cost of Rh precursors. Whereas pure RhO_x is unstable towards cathodic reduction, RuO₂ stabilizes RhO_x for Rh contents lower than 70%.

Previous work has shown that RuO_2 is strongly surface active in mixture with Co_3O_4 [3,4]. In this work we investigated mixtures of $IrO_2 + Co_3O_4$ prepared by thermal decomposition at 450 °C of suitable precursors. The resulting materials are surface enriched with IrO_2 . Surface characterization was performed by means of voltammetric curves, XPS and SEM. The electrocatalytic activity was investigated by means of steady-state polarization curves in alkaline solution. Due to surface enrichment, maximum activity was attained with a relatively small Ir content.

Small clusters of Ru were formed on Ni by spontaneous deposition from an acidic solution of RuCl₃. The morphology of the overlayer was observed to depend on concentration of acid and of precursor as well as solution temperature. The presence of Ru on the Ni surface was confirmed by SEM and XPS. Ru activates Ni for H₂ evolution by hundreds of mV. The Tafel slope decreases from that typical of Ni to that of Ru, while voltammetric curves exhibit a region where H adsorption/desorption peaks appear.

Acknowledgements. Work supported by MURST (Cofin2000), and National Research Center (CNR).

References

- 1. M. Campari, A.C. Tavares and S. Trasatti, *Hem. Ind.* (*Chem. Ind. Beograd*), **56** (2002) 230.
- 2. S. Trasatti, Portug. Electrochim. Acta, 19 (2001) 197.
- N. Krstajić, S. Trasatti, J. Appl. Electrochem., 28 (1998) 1291.
- N. Krstajić, S. Trasatti, J. Electrochem. Soc., 142 (1995) 2675.

^{*} Fax +39.02.503-14224; E-mail: sergio.trasatti@unimi.it