Stabilization of NASICON-based CO₂ sensor operative at room temperature by using Li₂CO₃-BaCO₃ auxiliary phase

K. Shimanoe^{a)}, K. Obata^{b)}, N. Miura^{c)}, N. Yamazoe^{a)}
^{a)} Department of Materials Science, Faculty of Engineering Sciences,
^{b)} Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences.

^{c)} Advanced Science and Technology Center for Cooperative Research,

Kyushu Univ., Kasuga-shi, Fukuoka 816-8580, Japan E-mail: simanoe@mm.kyushu-u.ac.jp

We have shown that the NASICON (Na₃Zr₂Si₂PO₁₂)-based potentiometric device attached with a metal oxide (In₂O₃ or ITO) sensing electrode has exhibited good CO₂ sensing properties at room temperature when a metal carbonate like NaHCO₃ is incorporated as an auxiliary phase [1, 2]. However the EMF output of the devices was found to suffer from a disturbance (base line shift) by a change in humidity. The disturbance seems to originate from the instability of the auxiliary phase involved. In this study, we tried to eliminate the disturbance by introducing a mixed carbonate auxiliary phase of Li₂CO₃-BaCO₃.

Figure 1 shows a schematic drawing of the CO_2 sensor fabricated. The NASICON powder derived by a sol-gel method was used for fabricating the NASICON disk. Li₂CO₃-BaCO₃ (0:1-1:4 in molar ratio) was attached on one side of NASICON disk by mechanical press, followed by calcining at 500 °C for 30 min. On top of it, Indium Tin oxide (ITO) paste was applied with a gold mesh electrode inserted in it and calcined at 500 °C for 30 min in air. The reference gold electrode was attached on the reverse side of the disk by applying gold paste and calcining at 800 °C for 2 h before the Li₂CO₃-BaCO₃ auxiliary phase was attached. Gas sensing properties were measured in a conventional gas-flow apparatus equipped with a heating facility.

Figure 2 (a) shows CO₂ sensing properties of the device attached with an auxiliary phase at room temperature under various conditions of humidity (RH). The EMF response was linear to the logarithm of CO₂ concentration, with its slopes indicating n=1.7 - 1.8 where n is the number of reaction electrons involved in the electrochemical reduction per CO₂. With an increase in RH, however, the EMF vs. CO₂ concentration correlations tended to shift up. The shift (disturbance) by a humidity change was observed with this device, although the extent of the shift was far smaller compared with the devices attached with an NaHCO₃ or Na₂CO₃ auxiliary phase. This phenomenon may originate from the instability of the auxiliary phase involved. Thus the auxiliary phase was replaced by Li₂CO₃-BaCO₃, which has been known to give stable sensing properties for a high temperature

type CO_2 sensor. The resulting device was found to exhibit good CO_2 sensing properties stable against humidity changes, as shown in Fig. 2 (b).

References

 K. Obata, S. Kumazawa, K. Shimanoe, N. Miura, N. Yamazoe, *Sensors and Actuators B*, **76**, 639(2001).
 K. Obata, K. Shimanoe, N. Miura, N. Yamazoe, *Sensors and Actuators B*, submitted.

Fig. 1 Schematic drawing of CO₂ sensor.

Fig. 2 EMF vs. CO_2 concentration relations for (a) Li₂CO₃ and (b) Li₂CO₃-BaCO₃ (1:2 in molar) attached devices at 30 °C.