Self-discharge Study of $LiCoO_2$ and $LiMn_2O_4$

Cathodes Y.Ozawa^{1,2}, R.Yazami^{1,2} and B.Fultz² ¹California Institute of Technology, Pasadena, CA 91125. ²CNRS-UMR 5631- Grenoble, France

Introduction

The self-discharge of lithium half-cells based on $LiCoO_2$ and $LiMn_2O_4$ cathodes was carried out by monitoring the OCV vs. time and the total capacity loss Q_{tl} at different storage temperatures in order to compare these cathode materials in terms of activation energy and phase transformations.

Experimental

The half-cells consisted of Li/PC-LiClO₄/ LiCoO₂ and LiMn₂O₄ cells. After 5 cycles at ambient temperature up to 4.2V and 4.4V for LiCoO₂ and LiMn₂O₄ respectively, the cells were aged in their initial charged state at different temperatures (60<T<75°C). The crystal structure of cathodes after aging were studied ex-situ by XRD and TEM.

Results and Discussion

Figure 1 shows the OCV vs. time traces at 60 and 75°C for LiCoO₂ and LiMn₂O₄ based cells. At 60°C, after 10 days aging, the OCV with LiMn₂O₄ remained higher than with LiCoO₂. The result is different at 75°C as the OCV of Li_xMn₂O₄ decreased more rapidly than in LiCoO₂. The OCV of Li_xMn₂O₄ shows two plateaus similar to the ones observed during low-rate galvanostatic discharge before thermal storage, suggesting lithium re-intercalation.

The comparison of total capacity loss Q_{tl} at 60 and 75°C between LiCoO₂ and LiMn₂O₄ is shown in figure 2. For each temperature, the total capacity loss Q_{tl} is higher in LiMn₂O₄ than Li_xCoO₂. The analysis of the OCV(t, T) and $Q_{tl}(t, T)$ traces by fitting with semi-empirical kinetics laws allowed the activation energy of both processes to be determined. The activation energy E_a of LiMn₂O₄ and LiCoO₂ calculated from OCV(t, T) and $Q_{tl}(t, T)$ curves are shown in table I.

The capacity loss has two components; a reversible and an irreversible loss. The reversible part is attributed to the Li⁺ re-intercalation in delithiated cathodes. This may take place as result of electrolyte oxidation (PC oxidation or ClO_4 radical formation). The irreversible loss may due to phase transformation taking place on the surface of the crystallites. In a recent work we showed the formation of the spinel lithium cobalt oxide after thermal aging^[1]. In LiMn₂O₄, XRD revealed a new phase after 6 days aging at 60°C, which is attributed to orthorhombic Li₂MnO₃[[] After 30 days, another phase is present that corresponds to the monoclinic LiMnO₂^[2]. Concomitantly, the relative intensity of the Li₂MnO₃ peaks decreased. Therefore we believe that LiMnO₂ results from Li₂MnO₃ decomposition. This may involve the Mn dissolution and migration across the cell.

Figure 1: Comparison of OCVvs. time at 60 and 75° C in Li_xCoO₂ and Li_xMn₂O₄ based half cells

Figure 2: Comparison of total capacity losses Q_{tl} at 60 and 75°C in Li_xCoO₂ and Li_xMn₂O₄ half-cells

E _a (kJ/mole/K)	OCV	Q_{tl}
LiCoO ₂	41.3	81.2
LiMn ₂ O ₄	92.0	83.2

Table 1: activation energy of self discharge from the OCV and capacity loss measurements

References

- [1] H. Gabrisch, R. Yazami and B. Fultz, Electrochem. Solid State Letters, **5**, A111 (2002).
- [2] M.M.Thackeray, M.F.Mansuetto and J.B.Bates, J. Power Sources, **68**, 153-158(1997).