Recent Development of ENEA Lithium Metal Battery Project

G. B. Appetecchi, J.H. Shin, F. Alessandrinì, S. Passerini

ENEA (Italian National Agency for New Technology, Energy and the Environment), IDROCOMB
Via Anguillarese 301, 00060 Rome, Italy
e-mail: passerini@casaccia.enea.it,
tel. (+) 39 06 3048 4985, fax (+) 39 06 3048 6357

Introduction

A common approach to enhance the conductivity of PEO polymer electrolytes is the use of a lithium salt having a very large counter-ion which is able to interfere with the crystallization process of the polymer chains,\(^1\) thereby promoting amorphous regions and increasing the lithium ion transport in the polymer electrolyte.\(^2,3\) Following this approach, we have shown that the use of a large anion \(\text{NSO}^{	ext{(CF}_{2}\text{CF}_{2})_2}\) (BETI) lithium salt enhances the conductivity of PEO-based polymer electrolytes.\(^4\) In this scenario, we decided to investigate the feasibility of PEO-LiBETI electrolytes in Li/V\(_2\)O\(_5\) polymer battery prototypes having capacities ranging from 0.5 to 1 Ah.

Experimental

PEO-LiBETI polymer electrolyte films were prepared by a completely dry, solvent-free procedure developed at ENEA.\(^5,6\)

The V\(_2\)O\(_5\)-based composite cathodes were prepared by following a procedure developed at ENEA\(^7\) and industrially scaled-up by Ferrania S.p.A.

The Li/PEO-LiBETI/V\(_2\)O\(_5\) prototypes are formed by a stack of ten bipolar cells connected in parallel. The final devices, housed in sealed coffee-bag envelopes under vacuum, were realized by laminating ten cathode tapes, eleven lithium foils and twenty polymer electrolyte layers.

Results

In Figure 1 is plotted the voltage/capacity profile of two Li/PEO-LiBETI/V\(_2\)O\(_5\) battery prototypes held at 90°C during the first discharge/charge cycle. A capacity of 0.8 Ah (2.75 equivalent of Li per mole of V\(_2\)O\(_5\)) was delivered in the initial discharge while 82% of the lithium inserted, i.e., 0.66 Ah, was recovered.

The discharge capacity vs. current density dependence for two Li/PEO-LiBETI/V\(_2\)O\(_5\) battery prototypes held at 90°C is reported in Figure 2. The prototypes are capable to deliver more than 85% of full capacity up to 0.5 m\(\text{Acm}^{-2}\) (C/3.7). Above 50% and 20% of reversible capacity is still delivered at 1.0 m\(\text{Acm}^{-2}\) (C/1.9) and 2.0 m\(\text{Acm}^{-2}\) (1.1C), respectively.

The results demonstrated clearly the feasibility and reproducibility of the Li/V\(_2\)O\(_5\) polymer battery prototypes.

Acknowledgement

Financial contribution from MIUR (Ministero per l’Istruzione, l’Università e la Ricerca) is kindly acknowledged. The authors thank Dr. Boyd of 3M for kindly providing the LiBETI salt. Ferrania S.p.A. is acknowledged.

References

![Figure 1](Image 315x323 to 538x469)

Figure 1. Voltage/capacity profile of two Li/PEO-LiBETI/V\(_2\)O\(_5\) battery prototypes held at 90°C during the first discharge/charge cycle.

![Figure 2](Image 315x515 to 538x683)

Figure 2. Discharge capacity, reported as percent of reversible capacity, vs. current density plot of two Li/PEO-LiBETI/V\(_2\)O\(_5\) battery prototypes held at 90°C. The discharge rates are also reported. Charge current density: 0.2 m\(\text{Acm}^{-2}\).