Insight into Pseudocapacitance Mechanism for Fe<sub>3</sub>O<sub>4</sub>/ Sulfite Supercapacitor

By: <u>Nae-Lih Wu</u> and S. Y. Wang Department of Chemical Engineering National Taiwan University Taipei, Taiwan 106, R.O.C.

## Abstract

Searching for pseudo-capacitive material of low cost and environmental benignity has recently led us to discover nanocrystalline Fe<sub>3</sub>O<sub>4</sub> supercapacitor based on aqueous electrolytes containing  $SO_3^{-2}$ . Although this system has been unequivocally shown to have an operation range of 1.1 V and a cycle life exceeding tens thousand cycles under low dissolved oxygen content (< 0.1 ppm), its specific capacitance varies dramatically, ranging from a few tens to greater than 300 F/g, with synthesis conditions. Understanding the pseudo-capacitance mechanism, which has not been revealed until now, is essential to the optimization of the performance of the device.

pseudo-capacitance Investigation on the mechanism was carried out in this work by using  $Fe_3O_4$  thin film electrodes (Fig. 1) that were synthesized by electrodeposition on Pt foils. Electrochemical characterizations were conducted by using both cyclic voltammetry and EQCM (Electrochemical Quartz Crystal Microbalance) analyses (Fig. 2), in conjunction with structural and morphological analyses by XRD and SEM. For comparison, analyses were carried out not only in  $SO_3^{-2}$  electrolyte but also in other electrolytes, such as  $Cl^{-}$  and  $SO_4^{-2}$ , which give only electrical-double-layer capacitance. Experimental results point to the conclusion that the pseudo-capacitance results mainly from the  $SO_3^{-2}/S^{-2}$  redox couple involving the specifically adsorbed  $SO_3^{-2}$ surface species (Fig. 3). The roles of other surface reactions, such as the redox reactions of the oxide itself, on the performance of the supercapacitor are also identified.



Fig. 1. CV of  $Fe_3O_4$  thin film in different electrolyte solutions .



Fig. 2. EQCM analysis on  $Fe_3O_4$  film in  $SO_3^{-2}$  electrolyte solution.



Fig. 3. Schematics of the proposed Pseudocapacitance mechanism involving  $SO_3^{-2}/S^{-2}$  redox couple.