THE USE OF C4F6 PLASMAS AS AN ALTERNATIVE TO PERFLUOROCARBONS FOR HIGH ASPECT RATIO CONTACT HOLE ETCHING

<u>Chang-Koo Kim</u>¹, Chee Burm Shin¹, Hyun-Kyu Ryu², and Yil Wook Kim³

- ¹ Department of Chemical Engineering, Ajou University, Suwon 443-749, Korea
- ² LG Chem, Ltd., Daejeon 305-380, Korea
- ³ Hynix Semiconductor, Inc., Ichon 467-701, Korea

A high aspect ratio contact hole etching of dielectrics (e.g., SiO_2) is one of the key processes in developing the next generation ultra large scale integrated devices because of the rapid shrinkage of the design rule to the nanometer level. Perfluorocarbons (PFCs) such as CF₄, C₂F₆, and c- C_4F_8 are widely used as etchant gases for contact hole etching. These PFCs, however, are considered to be problematic from an environmental viewpoint because of their long atmospheric lifetimes and high global warming potentials (GWP) [1, 2]. Several classes of environmentally benign chemistries have been examined as alternatives to PFCs, and unsaturated fluorocarbons (UFCs) such as C_3F_6 and C_4F_6 are one of the attractive candidates.

In this study, we reports on an etching of a SiO₂ contact hole with a diameter of 0.17 μ m and an aspect ratio of 15 using C₄F₆/O₂/Ar and C₄F₆/O₂/Ar/CH₂F₂ plasmas (UFCcontaining plasmas). A SiO₂ contact hole etching in a c-C₄F₈/O₂/Ar/CH₂F₂ plasma (PFC-containing plasma) was also conducted to compare the etch profiles and contact resistances obtained in the two different gas discharges: C₄F₆/O₂/Ar/CH₂F₂ and c-C₄F₈/O₂/Ar/CH₂F₂ plasmas.

Fig. 1 shows the SEM micrographs of the 0.17- μ m diameter contact holes etched in C₄F₆/O₂/Ar plasmas without and with CH₂F₂ addition, respectively. In the absence of CH₂F₂ gas (Fig. 1 (a)), it can be seen that erosion of the PR layer occurs around the contact hole so severely that it is not likely to maintain the CD of the deep contact hole. On the contrary, for the case of adding 20 sccm of CH₂F₂ gas to a C₄F₆/O₂/Ar plasma (Fig. 1 (b)), relatively thick fluorocarbon films are deposited on the PR layer and around the contact hole. This resulted in maintaining the CD after ashing the PR layer and cleaning the fluorocarbon films.

Fig. 2 shows the SEM micrograph of the deep contact hole, with a diameter of 0.17 μ m and an aspect ratio of 15, etched in a C₄F₆/O₂/Ar/CH₂F₂ plasma. We obtained a bowing-free deep contact profile with a contact profile angle of 89.5 ° at 20 sccm of CH₂F₂ gas.

It is seen from Fig. 3 that the contact resistance distributions of a contact hole (0.19 μ m diameter) etched in C₄F₆/O₂/Ar/CH₂F₂ and c-C₄F₈/O₂/Ar/CH₂F₂ plasmas reveal that the resistance difference is within spec. (about 1.2 Ω).

In conclusions, the use of C_4F_6 gas as an etchant gas for a high aspect ratio contact hole etching can be a good alternative to PFC gases.

References

 S. Karecki, R. Chatterjee, L. Pruette, R. Reif, T. Sparks, L. Beu, V. Vartanian, and K. Novoselov, J. *Electrochem. Soc.*, 148, pp.G141-G149 (2001). R. Chatterjee, S. Karecki, R. Reif, V. Vartanian, and T. Sparks, *J. Electrochem. Soc*, 149, pp.G276-G285 (2002).

Fig.1 SEM micrographs of the etched contact holes with 0.17- μ m diameter using (a) C₄F₆/O₂/Ar and (b) C₄F₆/O₂/Ar/CH₂F₂ plasmas. Thickness of the initial PR layer was 0.56 μ m. The flow rate of CH₂F₂ in case (b) was 20 sccm.

Fig.2 SEM micrograph of the 0.17 μ m diameter contact hole etched in a C₄F₆/O₂/Ar/CH₂F₂ plasma. The aspect ratio and the contact angle of the hole were 15 and 89.5 °, respectively. The flow rate of CH₂F₂ was 20 sccm.

Fig.3 Contact resistance distributions of a contact hole etched in $C_4F_6/O_2/Ar/CH_2F_2$ (filled rectangles) and c- $C_4F_8/O_2/Ar/CH_2F_2$ (open rectangles) plasmas.