Long-Time Relaxation of Silicon Resistivity after Annihilation of Thermal Donors

G.I.Voronkova¹, A.V.Batunina¹, V.V.Voronkov², R.Falster³ and M.Porrini²

¹ Institute of Rare Metals, B.Tolmachevskij 5, 109017 Moscow, Russia

² MEMC Electronic Materials, via Nazionale 59, 39012 Merano BZ, Italy

³ MEMC Electronic Materials , viale Gherzi 31, 28100 Novara 1, Italy

Grown-in thermal donors (TDs) are normally annihilated by annealing at 650° C or higher T, to restore the resistivity value corresponding to the dopant concentration (boron, in our case). We have found that immediately following such an anneal (followed by a quench) the resistivity drifts at the room temperature to a lower value - and, accordingly, the hole concentration pdrifts to a higher value. The amplitude of this relaxation is appreciable, sometimes up to 50% (Fig.1). To understand the reason for this phenomenon, we have monitored the relaxation process, by Hall effect and resistivity, in a number of samples of different boron concentration (in a range of $5x10^{12}$ to $5x10^{16}$ cm⁻³) and of different oxygen content, $(5 \text{ to } 8)x10^{17} \text{ cm}^{-3}$ using the optical calibration coefficient $2.45x10^{17} \text{ cm}^{-2}$. The relaxation curve p(t) can be well fitted by an exponential law $p_0 - \delta p \exp(-t/\tau)$ characterized by an amplitude δp and a relaxation time τ . The latter parameter was found to be in a range of several hours to several days. The saturated hole concentration p_0 was identified with the boron concentration $N_{\rm a}$.

The dependence of the relaxation amplitude δp and the relaxation time τ on the boron concentration N_a and the oxygen concentration C_{ox} was found to be specific for the annealing temperature. For a conventional annealing temperature of 650°C (for 30 min), the amplitude δp was proportional to N_a (in a middle concentration range of boron, 10^{13} to 10^{16} cm⁻³) and well correlated with C_{ox} . The amplitude, normalized by N_a , can be described by a power law C_{ox}^{m} ($m \approx 5.5$). The relaxation time was less definitely correlated with the parameters N_a and C_{ox} , but on average it was an increasing function of C_{ox} .

Annealing of TDs at a higher T, 900°C for 5 min, also induced an appreciable room-temperature relaxation but with a stronger correlation to N_a , and –surprisingly – with a decreasing dependence of δp on C_{ox} .

In one of the samples the Hall effect was monitored down to a liquid helium temperature, to deduce separate values for the boron acceptor concentration N_a and the compensating concentration N_d of donors (phosphorus, and probably some residual TDs). This was done right after a quench (after a time of about 1 h necessary to apply the electric contacts), and several days after - when p(t) was already saturated. It turned out that N_d was the same in both cases while N_a was increased. The relaxation process is thus essentially re-activation of boron acceptors partially de-activated by annealing. A strong correlation with oxygen suggests that the deactivation is caused by mobile oxygen clusters inherited from the anneal. Within this model, the clusters O_n (of *n* oxygen atoms) are partially trapped by boron acceptors to become electrically inactive BOn species (it is possible that these centers are also acceptors, but with a deeper energy level not felt in p-type material). The re-activation process implies that the O_n clusters are mobile even at

room temperature. The proportionality between the amplitude δp and the boron concentration is accounted for if the equilibrium between the free and boron-trapped O_n species is maintained, and the concentration of BO_n species is smaller than that of boron and of O_n clusters. Re-activation is caused by a loss of On, most likely due to aggregation of On into larger clusters. The origin of the quenched-in O_n clusters can be the initial TD-clusters. It is well known that the TDs are not dissolved by 650°C anneal but transform into some other (inactive) clusters that later give rise to the New Thermal Donors (NTDs) [1]. These 'transient' oxygen clusters (already not TDs and not yet NTDs) can be the reason for the roomtemperature relaxation of the resistivity. In the final stage of this work, it was discovered that the relaxation time τ was very sensitive to the sample illumination level, decreasing essentially under deliberate illumination. The value of τ could be also reduced by keeping a sample at a slightly raised temperature (for example 30°C). The relaxation amplitude was insensitive to these factors. The effects of uncontrolled illumination (and, to a lesser extent, of a not precisely fixed temperature) are thought to be the main source of a scatter in the value of τ .

There is a remarkable similarity between the boron deactivation/re-activation of the present study and a wellknown phenomena of lifetime degradation/recovery related to boron and oxygen impurities in photo-voltaic silicon materials [2,3].

References

- A.Kanamori and M.Kanamori, J. Appl. Phys., 50, 8095 (1979).
- 2. S.W.Glunz, S.Rein, J.Y.Lee and W.Warta, *J. Appl. Phys.*, **90**, 2397 (2001).
- J.Schmidt and A.Cuevas, J. Apple. Phys., 86, 3175 (1999).

Fig.1 Room-temperature relaxation of the hole concentration (monitored by Hall effect) after anneal at 650° C for 30 min followed by a quench. Oxygen concentration is $7x10^{17}$ cm⁻³.