High Breakdown Field (> 15MV/cm) on Crystalline

□-Ga₂O₃/GaN Metal Oxide Semiconductor Devices

L.-H. Peng, H.-M. Wu, and J.-Y. Li

Department of Electrical Engineering and Institute of Electro-optical Engineering, National Taiwan University 1 Roosevelt Rd. Sec.4, Taipei, 106 Taiwan, R.O.C.

We investigate the crystallinity effect of gallium oxide (Ga₂O₃) on the electrical properties of n-gallium nitride (GaN) metal oxide semiconductor (MOS) devices. Shown in Fig.1, the x-ray diffraction analyses of the oxide layer identified the signals from the (019) and (024) planes of monoclinic phase \Box -Ga₂O₃, indicating the crystallinity of Ga₂O₃ layer. A thin strain-relieving layer (~ 20nm) of gallium oxynitride (GaON) with graded composition¹, as revealed by the x-ray photoemission spectroscopy, is shown to assist the oxide growth on GaN in the photo-electro-chemical process². Standard MOS structure with crystalline \Box -Ga₂O₃ layer on GaN was fabricated through lithography process. In Fig.2, improved MOS characteristics with high forward breakdown field $E_{FB} >$ 15 MV/cm, and high value of gate oxide barrier height $\Box_{\rm B}$ ~ 2.2 eV were observed. In Fig.3, a narrow hysteresis width of 0.26V, fixed oxide charge density $N_f \sim 8.6 \times 10^{10}$ cm^2 and a flat band voltage of ~ 1.42V and outstanding low interface state density D_{it} ~ 3.5×10¹¹ cm²-eV¹ extracted by the conductance method were observed³. These observations are ascribed to the formation of crystalline Ga₂O₃ layer as the oxide is transformed from a hydrous status into a monoclinic phase during a post-growth thermal annealing in O₂ ambience.

Reference

1. Y. Nakano and T. Jimbo, Appl. Phys. Lett. 82, 218 (2003).

2. L.-H. Peng, C.-H. Liao, Y.-C. Hsu, Appl. Phys. Lett. 76, 511 (2000).

3. B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, IEEE Trans. Electron Dev. 48, 458 (2001)

Fig. 1: (a) XRD spectra showing the progressive, and SEM micrograph showing (b) planar and (c) cross-section view of a Ga_2O_3 layer with ~150nm thickness on GaN.

Fig.2: Gate leakage current density on electric field in Ga₂O₃/GaN MOS devices with 50 and 100nm oxide thickness. Inset: showing a forward breakdown occurred at 15 MV/cm for the 50nm-thick Ga₂O₃/GaN MOS.

Fig. 3: Measured interface state density for the 50nm and 100nm –thick Ga_2O_3/GaN MOS devices by the Terman and conductance methods, respectively. Inset: showing a narrow hysteresis window (~ 0.26V)