Extraction of band offsets in Strained Si/Strained Si_{1-y}Ge_y on relaxed Si_{1-x}Ge_x dual-channel enhanced mobility structures

C. Ní Chléirigh, C. Jungemann*, Jongwan Jung, O. O. Olubuyide and J.L. Hoyt MIT, 60 Vassar St., Bldg. 39-661, Cambridge, MA 02139, Phone: 617 4523193, Fax: 617 2538509, Email: <u>cait@mit.edu</u>. * Technical University Braunschweig

A dual-channel structure consisting of a thin (~3 nm) strained Si layer on strained Si_1-yGe_y on relaxed Si_1-xGe_x (Fig. 1) has been shown to offer large enhancements in both electron and hole mobilities in a single epitaxial layer stack [1,2]. Mobility enhancements as large as 1.8x and 10x have been measured in n- and p-MOSFETs respectively [3]. It is essential to know the band structure in order to accurately model these devices. In particular the valence band offset, ΔE_V , between the strained Si and strained Si_{1-v}Ge_v layers (Fig. 1) determines the degree of hole confinement in the Si1-yGey layer. The positions of the conduction band edge in the strained Si and the valence band edge in the strained Si1-yGey significantly impact the effective bandgap of the structure and can be used to tune the threshold voltage of both n- and p-MOSFETs for use with a single workfunction metal gate [4]. Theoretical predications of these band parameters are uncertain by ± 100 meV [5,6]. In this work, for the first time, we extract these critical band parameters over a wide range of Ge composition and strain, using a combination of experiment and modeling. It is also shown that the appropriate density of states for the strained layers must be used in order to accurately model the capacitance-voltage (C-V) behavior.

Epitaxial layers were grown in an Applied Materials "Epi-Centura" system. The layer structure is illustrated in Fig. 1. High frequency C-V was measured and compared to simulations taking into account quantum corrections using the density gradient model in Dessis [7]. The valence band offset, ΔE_V was extracted from the analysis. As the bias is swept negative, hole accumulation occurs first in the strained Si_{1-y}Ge_y layer. A plateau forms in the C-V curve, which is very sensitive to ΔE_V (Fig. 2).

The effective valence band density of states N_V decreases with strain and increasing Ge content [8]. N_V values calculated by the nonlocal empirical pseudopotential method from full-band Monte Carlo simulations [9] were used in the Dessis C-V simulations. Fig. 3 illustrates the improved C-V fitting obtained when the appropriate values are used for N_V in the strained Si and strained SiGe, and the impact on extracted oxide thickness and ΔE_V . Fig. 4 compares values of extracted ΔE_V for a more well studied structure, strained SiGe on relaxed Si. Using the full-band strained $N_{\rm V}$ values we obtain a slope of 101 meV/10% Ge for ΔE_V , and a corresponding value of 87 meV/10% Ge when the relaxed Si value is used for N_V. For strained Si on strained Si₁. $_{v}Ge_{v}$, ΔE_{v} increases with both y and strain (Fig. 5). The sensitivity of V_t and subthreshold slope to both ΔE_V and $N_{\rm V}$ demonstrate the importance of using appropriate values for accurate modeling of these structures (Fig. 6).

In summary, MOS C-V analysis has been used to extract critical band parameters for strained Si/strained SiGe dual-channel structures. These parameters are essential for modeling such high mobility structures. References:

[1] Leitz et al, *Appl. Phys. Lett.* 2001. [2] Jung et al, *EDL*, 2003.

[3] Lee et al, *IEDM*, 2003.

[4] S. Yu et al, submitted to EDL.
[5] People, J. Quant. Electronics, 1986.
[6] Schaffler, Semicond Sci. Technol.,

[7] Ancona et al, *Phys. Rev.B*, 1989.
[8] Manku et al, *J. Appl. Phys.*, 1991.
[9] Rieger et al, *Phys. Rev.B*, 1993.
[10] Lang et al, *Appl. Phys. Lett.* 1985.
[11] King et al, *Trans. Electron Devices*, 1989.

Fig. 1 Structure and band diagram for strained Si on strained Si_{1-x}Ge_y on relaxed Si_{1-x}Ge_x (x<y) dual channel p-MOSFET. P-type doping used for capacitor structures.

Fig. 2 ΔE_V extraction and sensitivity for strained Si, strained Si_{0.4}Ge_{0.6} on a relaxed Si_{0.7}Ge_{0.3} substrate. Measured data with simulation of ΔE_V =435meV ± 20meV.

Fig. 5 Extracted ΔE_V for strained Si on strained Si_{1-x}Ge_y on various relaxed Si_{1-x}Ge_x substrates. Line fit gives slope of 105, 97, 99 meV/10%Ge in the strained Si_{1-y}Ge_y for x of 0.19, 0.31 and 0.40 respectively.

Fig. 3 Impact of $N_{\rm V}$ value on fitting of simulation to experimental results. Same structure as for Fig.2.

Fig. 6 Simulated V_t and subthreshold slope versus ΔE_V for dual channel p-MOSFET on relaxed $Si_{0.7}Ge_{0.3}$ substrate with N_V for unstrained Si and strained Si, $Si_{1-y}Ge_{y.}$