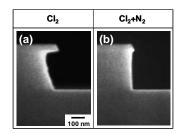
## Sidewall Protection by Nitrogen in Anisotropic Etching of P-doped Poly-Si<sub>1-x</sub>Ge<sub>x</sub>

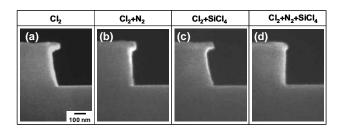
Hang-Sup Cho, Shinobu Takehiro, Masao Sakuraba and Junichi Murota\*

Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan \*Corresponding Author: Tel&Fax: +81-22-217-5548 E-mail: murota@riec.tohoku.ac.jp

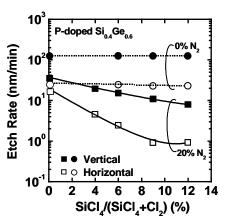
Polycrystalline(poly)-Si<sub>1-x</sub>Ge<sub>x</sub> has become attractive as a gate electrode material of MOS devices to replace poly-Si, because it is possible to control the threshold voltage by variation of work function with Ge fraction (1). For application of poly-Si<sub>1-x</sub>Ge<sub>x</sub> to MOS gate, highly anisotropic etching of poly-Si<sub>1-x</sub>Ge<sub>x</sub> is required. In our previous works, it has been found that the sidewall etching of P-doped poly-Si was suppressed by the N<sub>2</sub> addition and highly anisotropic etching was performed, as shown in **Fig. 1** (2). In the present work, etching characteristics of P-doped poly-Si<sub>1-x</sub>Ge<sub>x</sub> in Cl<sub>2</sub>/N<sub>2</sub>/SiCl<sub>4</sub> plasma are investigated, and the sidewall protection by nitrogen is discussed.


The dry etching of P-doped poly-Si<sub>1-x</sub>Ge<sub>x</sub> was carried out using an electron-cyclotron-resonance (ECR) plasma etching apparatus. The total pressure of gases supplied to reactor chamber was 0.28 Pa, and the microwave power to generate plasma was 350W. A 400 nm-thick P-doped poly-Si<sub>0.4</sub>Ge<sub>0.6</sub> film (P concentration:  $1 \times 10^{20}$  cm<sup>-3</sup>) was grown at 550°C on the thermally oxidized Si wafer by ultraclean low-pressure CVD using a SiH<sub>4</sub>-GeH<sub>4</sub>-PH<sub>3</sub>-H<sub>2</sub> gas mixture (3). After an 80 nm-thick SiO2 mask was formed by CVD at 350°C, photolithography and wet etching, dry etching of P-doped poly-Si<sub>1-x</sub>Ge<sub>x</sub> was performed. To investigate the effect of radical reaction on the sidewall etching, radical dominant etching was also examined using a shutter above the wafer (4). N and Si atom amount on the etched surface was evaluated by XPS.

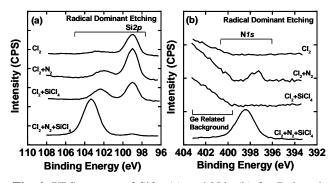
Cross-sectional SEM images of P-doped poly-Si<sub>0.4</sub>Ge<sub>0.6</sub> after the dry etching are shown in Fig. 2. It is found that, with addition of both N<sub>2</sub> and SiCl<sub>4</sub>, the sidewall etching becomes smaller than that with  $N_2$  addition. SiCl<sub>4</sub>/(SiCl<sub>4</sub>+Cl<sub>2</sub>) ratio dependence of the vertical and horizontal etch rates is shown in Fig. 3. In the case without N<sub>2</sub> addition, both the etch rates scarcely change with increasing  $SiCl_4/(SiCl_4+Cl_2)$  ratio. In the case with  $N_2$  addition, both the etch rates tend to decrease and the anisotropy becomes larger with increasing SiCl<sub>4</sub>/(SiCl<sub>4</sub>+Cl<sub>2</sub>) ratio. XPS spectra of Si2p and N1s for P-doped poly-Si<sub>0.4</sub>Ge<sub>0.6</sub> after the radical dominant etching are shown in Fig. 4. With  $N_2$  addition, Si2p peak with the chemical shift and N1s peak are observed, indicating the formation of the Si-N bond on the etched surface. On the other hand, with addition of both  $SiCl_4$  and  $N_2$ , the intensities of Si2p and N1s peak drastically increase compared with either SiCl<sub>4</sub> or N<sub>2</sub> addition. It is considered that an ultrathin Si nitride film is formed on the surface by reaction of  $SiCl_4$  and  $N_2$  under the radical dominant etching. From these results, it is suggested that highly anisotropic etching of P-doped poly-Si<sub>1-x</sub>Ge<sub>x</sub> is achieved by the protective Si nitride formation on the sidewall.


## References

1. T. J. King, J. P. Mcvittie, K. C. Saraswat, and J. R. Pfiester, IEEE Trans. Electron Devices, **41**, 228 (1994).


- 2. H. Uetake, T. Matsuura, T. Ohmi, J. Murota, K. Fukuda, and N. Mikoshiba, Appl. Phys. Lett., **57**, 596 (1990).
- 3. J. Murota, and S. Ono, Jpn. J. Appl. Phys., **33**, 2290 (1994).
- 4. H. Takeuchi, T. Matsuura and J. Murota, Appl. Phys. Lett., 77, 1828 (2000).




**Fig. 1**. Cross-sectional SEM images of P-doped poly-Si at 10% over etching (P concentration:  $8 \times 10^{20} \text{ cm}^{-3}$ ). The flow ratio of added N<sub>2</sub> to Cl<sub>2</sub> is 10%.



**Fig. 2.** Cross-sectional SEM images of P-doped poly-Si<sub>0.4</sub>Ge<sub>0.6</sub> at 10% over etching. The flow ratio of added SiCl<sub>4</sub> and N<sub>2</sub> to Cl<sub>2</sub> is (b)  $3\%N_2$ , (c) 9%SiCl<sub>4</sub>, and (d)  $20\%N_2+9\%$ SiCl<sub>4</sub>, respectively.



**Fig. 3**.  $SiCl_4/(SiCl_4+Cl_2)$  ratio dependence of the etch rate with addition of  $SiCl_4$  and  $N_2$  for P-doped poly- $Si_{0.4}Ge_{0.6}$ . The flow ratio of added  $N_2$  to  $SiCl_4+Cl_2$  is 0% and 20%.



**Fig. 4**. XPS spectra of Si2p (a) and N1s (b) for P-doped poly-Si<sub>0.4</sub>Ge<sub>0.6</sub> after the radical dominant etching. The flow ratio of added SiCl<sub>4</sub> and N<sub>2</sub> to Cl<sub>2</sub> is 9% and 20%, respectively.