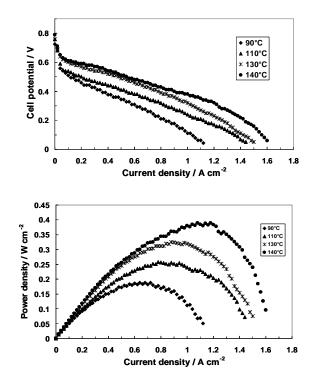
Zeolites as Inorganic Fillers in Composite Membranes for High Temperature Direct Methanol Fuel Cells

V. Baglio¹, A. Di Blasi¹, A.S. Arico¹, P.L. Antonucci², F. Nannetti³, V. Tricoli³, V. Antonucci¹
¹CNR-ITAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
²University of Reggio Calabria, Località Feo Di Vito, 89100 Reggio Calabria, Italy
³University of Pisa, Dipartimento di Ingegneria Chimica,

56126 Pisa, Italy


Composite recast Nafion membranes containing inorganic fillers have been used in direct methanol and H₂-air fuel cells [1-3]. The hygroscopic filler increases the water retention properties of polymer electrolytes allowing fuel cell operation at about 150° C in the presence of low humidification. A further advantage of the composite membrane is the reduction of methanol cross-over [4], due to a physical barrier effect provided by the inorganic filler.

In this work, composite Nafion membranes containing three natural zeolites (Mordenite, Chabazite and Clinoptilolite) were prepared by using a recast procedure. The behaviour of the composite membranes was evaluated in high temperature DMFCs (140°C). The thickness of all membranes was about 70 μ m. The catalyst employed for methanol oxidation was a 60 wt% Pt-Ru (1:1)/Vulcan (E-TEK), whereas a 30 wt% Pt/Vulcan (E-TEK) was used for oxygen reduction. The platinum loading in all electrodes was 2 ± 0.2 mg cm⁻². Fuel cell tests were carried out in a 5 cm² single cell (GlobeTech, Inc.).

Maximum power densities between 350 and 390 mW $\rm cm^{-2}$ were recorded at 140°C under oxygen operation and 2M MeOH feed with 3 and 6 vol.% zeolite-based membranes (Fig. 1). The electrochemical behaviour of the composite membranes was interpreted in the light of the surface properties and acidic characteristics of the fillers.

Acknowledgements

The financial support of MIUR (Italian Ministry for University and Research) is gratefully acknowledged.

Fig. 1. Influence of operating temperature on the DMFC polarization and power density behaviour for the MEA equipped with a mordenite-based membrane in the presence of oxygen and 2M methanol feed.

References:

[1] A. S. Aricò, P. Cretì, P. L. Antonucci, V. Antonucci, *Electrochem. Solid State Lett.* 1 (1998) 66.

[2] A.S. Aricò, V. Baglio, A. Di Blasi, P. Cretì, P.L. Antonucci, V. Antonucci, *Solid State Ionics* 161 (2003) 251.

[3] K.T. Adjemian, S.L. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, *J. Electrochem. Soc.* 149 (2002) A256.

[4] B. Libby, W.H. Smyrl, E.L. Cussler, *Electrochem. Solid State Lett.* 4 (2001) A197.