Hydrous Ruthenium Oxide-Supported Pt and Pt-Ru Catalysts for the Oxidation of Methanol

Y. Murakami, Y. Izawa, T. Kawaguchi, W. Sugimoto, and Y. Takasu

Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University 3–15–1 Tokida, Ueda 386–8567, JAPAN

Binary Pt-Ru/C is a promising CO-tolerant anode catalyst for use in direct-methanol fuel cells (DMFCs). The promotion effect has been mainly discussed based on so-called "bifunctional effect" [1] or "ligand effect" [2] or mixture of both. The bifunctional mechanism proposes that Ru promotes the oxidation of the strongly bound CO_{ad} on Pt by supplying an oxygen source (Ru-OH_{ad}). According to the ligand effect, the energy level of the catalyst is changed so that the binding strength of CO_{ad} is weakened, thereby reducing the oxidation overpotential.

The actual state of the active ruthenium component is still a point of discussion. Some investigations suggest that hydrous ruthenium oxide is one of the active components for oxidation of the carbonaceous intermediates adsorbed on the catalyst surface in binary Pt-Ru black catalysts [3-5]. When Pt or Pt-Ru was deposited on hydrous ruthenium oxide, however, no significant electrochemical activity was found [6].

 $Pt/RuO_2 \cdot xH_2O$ catalysts were prepared by the liquid-phase reduction of H_2PtCl_6 . H_2PtCl_6 in an aqueous solution was completely reduced with 1-propanol at 87°C to Pt particles dispersed on commercial $RuO_2 \cdot xH_2O$ ([Pt]:[$RuO_2 \cdot xH_2O$] = 3:7, 5:5 and 7:3).

Pt-Ru/RuO₂ xH₂O catalysts were prepared on the basis of a preparation method of Pt-Ru/C by Poizo et. al. [7]. $(NH_3)_2$ PtCl₆ and RuNO(NO₃)_x in an aqueous solution ([(NH₃)₂PtCl₆]/[RuNO(NO₃)_x] = 1) were completely reduced with sodium borohydride at 110°C to Pt-Ru particles dispersed on commercial RuO₂·xH₂O ([Pt]:[Ru]:[RuO₂·xH₂O] = 1:1:8, 1:1:4, 1:1:2, 1:1:1, 2:2:1 and 4:4:1).

The working electrode was a thin film electrode composed of a mirror polished Glassy Carbon rod (0.196 cm² exposed surface) modified with 40 μ g of the active material. A beaker-type electrochemical cell equipped with the working electrode, a platinum mesh counter electrode, and an Ag/AgCl reference electrode was used. Electrochemical measurements were conducted at 25°C. All electrode potentials will be referred to the RHE scale corrected for the temperature effect. Oxidation of preadsorbed carbon monoxide (CO_{ad}) was measured by CO_{ad} stripping voltammetry in 0.5 M H₂SO₄ solution at a scan rate of 10 mV s⁻¹. The electrochemical oxidation of methanol was characterized by the steady state current density at 0.5 V in 1 M CH₃OH + 0.5 M H₂SO₄ solution.

The CO_{ad} stripping voltmmograms were measured for $Pt/RuO_2 \cdot xH_2O$ catalysts with various loadings. The CO_{ad} oxidation potential for any $Pt/RuO_2 \cdot xH_2O$ catalyst significantly decreased compared with that for the Pt/C catalyst. It suggests that no CO_{ad} species was observed on $RuO_2 \cdot xH_2O$. These data support the bifunctional effect: $RuO_2 \cdot xH_2O$ promotes the oxidation of the strongly bound CO_{ad} on Pt by supplying an oxygen source.

Pt mass specific activities for the methanol oxidation were compared in $Pt/RuO_2 \cdot xH_2O$ catalysts with

various loadings. The specific activities of $Pt/RuO_2 \cdot xH_2O$ catalysts were independent of Pt-loadings and about 7 times as high as that of the Pt/C catalyst. No catalytic activity of $RuO_2 \cdot xH_2O$ was observed for the methanol oxidation.

X-ray diffraction patterns of Pt-Ru/RuO₂· xH_2O catalysts were attributed to the face-centered cubic crystalline structure of Pt. The lattice parameter of the cubic phase was smaller than that of the Pt cubic phase. It suggests a fcc solid solution of Pt and Ru. The lattice parameter was reduced by the introduction of Ru in the Pt fcc structure.

The CO_{ad} stripping voltmmograms were measured for Pt-Ru/RuO₂·*x*H₂O catalysts with various loadings. The CO_{ad} oxidation potential for any Pt-Ru/RuO₂·*x*H₂O catalyst significantly decreased compared with that for the Pt/C catalyst, similar to that for the Pt/RuO₂·*x*H₂O catalyst.

Pt mass specific activities for the methanol oxidation were compared in Pt-Ru/RuO₂·xH₂O catalysts with various loadings. The specific activities of Pt-Ru/RuO₂·xH₂O catalysts with high loadings ([Pt] /[RuO₂·xH₂O] = 2/1 and 4/1) were almost as high as that of the Pt/RuO₂·xH₂O catalyst, while, in the case of [Pt]/[RuO₂·xH₂O] = 1/4, the specific activity is about 3 times as high as that of the Pt/RuO₂·xH₂O catalyst. It suggests that binary Pt-Ru gives higher catalytic activity than Pt for highly dispersed Pt or Pt-Ru, while not highly dispersed Pt gives the similar activity to binary Pt-Ru because of the bifunctional effect of RuO₂·xH₂O.

- [1] M. Watanabe, S. Motoo, *Denki Kagaku* **41**, 190 (1973).
- [2] T. Frelink, W. Visscher, J. A. R. van Veen, Surf. Sci. 335, 353 (1995).
- [3] J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan, S. A. Weeks, *J. Electroanal Chem.* 240, 133 (1988).
- [4] D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long, *Langmuir* 15, 774 (1999).
- [5] K. Lasch, L. Jörissen, K. A. Friedrich, J. Garche, J. Solid State Electrochem. 7, 619 (2003).
- [6] K. Lasch, G. Hayn, L. Jörissen, J. Garche, O. Besenhardt, J. Power Sources 105, 305 (2002).
- [7] A. Poizo, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, *Electrochim. Acta* 48, 225 (2002).

Figure 1 Pt mass specific activities of Pt-Ru/RuO₂·xH₂O with various loadings ([Pt]:[Ru]:[RuO₂·xH₂O] = (a) 1:1:8, (b) 1:1:4, (c) 1:1:2, (d) 1:1:1, (e) 2:2:1 and (f) 4:4:1) and (g) Pt/RuO₂·xH₂O ([Pt]:[RuO₂·xH₂O] = 1:1) for the methanol oxidation at 0.5 V in 1 M CH₃OH + 0.5 M H₂SO₄ solution.