Solidification of ionic liquids for dye sensitized solar cells by use of carboxylic acids bearing long alkyl groups

S.Hayase, T.Kato, M.Fujimoto, A.Okazaki, U.Ogomi, T.Kado, W.Takashima, K.Kaneto Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196

Introduction: Solidification of dye sensitized solar cells (DSC) is one of demands before DSCs are put into practical uses¹⁻⁶. We have reported the chemically cross-linked gel electrolytes to solidify DSCs, where, polyvinylpyridine (PVP) and tetrabromomethylbenznen (B4Br) were employed as the gelator. We report here another type of cross-linkers replacing B4Br.

Experimental : Gel precursor compositions are summarized in Table 1. Gelation was carried out in the cell directly, the same way as B4Br/PVP gel electrolytes. Figure 1 shows the reaction scheme for the solidification. Ti-Nanoxide D paste (Solaronix SA) , SnO₂/F layered glasses (30 ohm/square, Nippon Sheet Glass Co. Ltd), and N3(Solaronix SA) dye, and sputtered Pt counter Table 1 Gelator compositions and solidification by gelation

-				Florente	
Abbreviation -	Cross-linker (Wt%)		DVD ² /w+9/3	Electrolyt	Gelation
Abbieviation	compounds	n ³	FVF (W176) e (TS3) ¹		Gelation
B4Br/PVP	B4Br (4)	-	2	100	ок
C1/PVP	Malonic acid(4)	1	2	100	ок
C4/PVP	Adipic acid (4)	4	2	100	NG
C7/PVP	Azelaic acid (4)	7	2	100	NG
C10/PVP	Dodecandioic acid (4)	10	2	100	ок
C14/PVP	Hexadecandioic acid (4)	14	2	100	ок

1)TS3: I_2 300mM in Methylpropyl imidazolium iodide(5% water), 2) Poly(vinylpyridine), 3) The number of CH_2

Figure 1 PVP-Dicarboxylic acid gels

Figure 2 Relationship between Voc and Jsc Abbreviations: see Table 1; AM1.5, 1 sun, 0.25cm²

electrodes were employed for DSC fabrications. **Results and discussion**

Solidification was observed for C1/PVP, C10/PVP and C14/PVP, however, not for C4/PVP and C7/PVP (Table 1). C1/PVP, C10/PVP and C14/PVP were turbid gels. Voc increased with an increase in the chain length (Figure 2). Jsc did not show clear relationships with the chain

length. The best results were obtained in case of C16/PVP gel electrolyte.

In order to elucidate the reason why C16/PVP gel had better performance than C10/PVP gel, the electrical impedance spectroscopy (Cole-Cole plot) was measured. (Table 2) These assignments have been made in our previous report^{4,5}. C14/PVP gel had lower interfacial charge transfer resistances. We have already reported that the interfacial charge transfer resistances decreased after electrolytes were solidified with B4Br/PVP gels^{2,6}. The resistance of C16/PVP was almost the same as that of B4Br/PVP gel.

The interfacial resistances between TiO_2/TiO_2 particles in nano-porous TiO_2 layers were lower for C14/PVP gels than for C10/PVP gels. We have already reported that the electron diffusion co-efficient increased when the

Table	2	Interfacial	charge	transfer	resistances
Iable	~	menacia	charge	uansiei	resistances

	C12/PVP	C16/PVP
R1:electrolyte/Pt[ohms]	12.86	4.38
C1:electrolyte/Pt[µF/cm ²]	345	1.89
R2:TiO ₂ /TiO ₂ [ohms]	6.03	1.41
C2:TiO ₂ /TiO ₂ [mF/cm ²]	0.01	0.073
R3:TiO ₂ /electrolyte[ohms]	6.79	11.01
C3:TiO ₂ /electrolyte[mF/cm ²]	0.0017	0.31
R4:electrolyte[ohms]	18.06	10.44
C4:electrolyte[F/cm ²]	0.15	0.14

 TiO_2 surfaces were modified with acetic acid⁴⁻⁵. In case of C14/PVP gels, TiO₂ layers would make better contacts with gel solids and the surface would be treated with C14 di-carboxylic acid.

C14/PVP had higher resistances between TiO_2 and gel electrolytes, suggesting that electron transfers from TiO_2 to electrolytes are retarded, probably because of the steric hindrances. This also supports the fact that C14 modified the TiO2 surface better than that of C10 described in the previous section. Actually, we observed that the dark current for C14/PVP gel was lower than that for C10/PVP gel.

Impedances associated with ion diffusions were lower in case of C14/PVP gels than C10/PVP gels. The turbidity of C14/PVP gel was more remarkable than that of C10/PVP gel. The results can be described by our previous explanation that phase separated gels prevent retardations of ion diffusions¹⁻⁴.

Conclusion: We found the new gel electrolytes for DSC solidification. Di-carboxylic aicds bearing longer alkyl chains exhibited better results. It was proved again that phase separated gel shows better performances.

References

1. S.Murai, et al., Photochem. Photobio. A: Chemistry, 148, (2002); 2. S.Mikoshiba, et.al., Chem. Lett. 918, (2002); 3. S. Murai, et al., Chem.Comm. 1534 (2003); 4. S.Sakaguchi, et al., J. Photochem. Photobio. A.Chem. 164, 117 (2004); 5. S.Hayase, et al., SPIE Proceeding in press; 6. Y.Shibata, et al., T.Kato, Chem. Commun, 2730 (2003)

This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government