Enhancement of electrochemical luminescence (ECL) from nanopores of TiO₂ S.Okamoto^a, K.Soeda^a, T.Iyoda^b, T.Kato^a, T.Kado^a, S.Hayase^a ^aKyushu Institute of Technology 2-4, Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196 ^bTokyo Institute of Technology

Introduction: Gratzel et al. have reported that dye sensitized solar cells equipped with nano-porous TiO_2 layers exhibit more than 10% photo-energy efficiencies¹ The enhancement has been explained by the large charge separation areas fabricated with nano-porous TiO_2 and electrolytes filling the pores¹. Our objective is to realize visible emissions from cells equipped with nano-porous TiO₂ layers and electrolytes filling the nano-pores.

Experimental: We used ECLs from $(\text{Ru(bpy)}_{3}^{2+})$, because this has been intensively studied ²⁻¹⁰. We used We used SnO_2 /porous simplest cell: glass/Fdoped the $TiO_2/(Ru(bpy)_3(PF_6)_2)$ acetonitrile /F doped in SnO₂/Glass(Figure 1).

The intense ECL was obserbed only when minus voltage was applied to TiO₂ layers

Table 1 summarized ECL from various metal oxides. ECL from TiO₂ with higer surface areas tended to emit stronger light. ECL increased with an increase in the thickness of TiO_2 films and had $260cd/m^2$ at 30 μ m thickness when 3 V was applied. Enhanced ECL was observed for cells bearing nanoporous ZnO layers, but not observed in case of nanopolous SnO2 layers

ECL mechanism has been reported as follows²⁻¹⁰. On a cathode, Ru(II) was reduced to form Ru(I). On a anode, Ru(II) was oxidized to form Ru(II). Ru(II), Ru(I) other in acetonitrile from anode and cathode. Ru(I) to form excited Ru(II)*. ECL is collides with Ru(III) to form excited Ru(II)*. observed when the excited Ru(II)* goes down to the ground state Ru(II).

How is ECL from cells bearing porous TiO₂ enhanced? One possible explanation was that electron injection from porous electrodes increased with an increase in the surface areas. This was denied by the fact that currents for cells bearing porous TiO_2 was almost the same as those without porous TiO_2 layers. The other explanation Table 1 ECL from cells bearing various porous metal oxides

t(µm)⁽⁹

7

7

7

7

30

7

Ru(M)

0.06

0.06

0.06

0.06

0.06

0.16

0.08

0.08

0.06

lm/W

0.4

0.5

0.6

0.0

0.0

0.6

0.3

0.0

0.0

V(V)⁽¹¹⁾

3.0

3.0

3.0

3.0

3.0

3.3 3.0

3.0

3.0

Figure 1 Cell configuration

0.3 non

m²/a

97.0

69.0

49.0

6.0

3.0

97.0

35.0

23.0

F6 ⁽¹⁾

F5⁽¹⁾

P25⁽²⁾ G1⁽¹⁾

G2⁽¹⁾

P25⁽²⁾

TiO₂

ZnO

SnO,

Showa Denko K.K. 2)Nippon Aerosil Co., Ltd.
 Nanoteck ZnO (C.I. Kasei Corporation) 4) Nanoteck SnO₂ (C.I.Kasei Corporation)

L[cd/m²]

47.6

69.5

69.8

7.4

4.9

260.0

82.7

12

5) Surface area 6) Luminescence 7)Current density at a diffinite voltage(3.0 or 3.3 V) 8) Efficiency (lumen/W) 9) Metal oxide thickness 10) Ru concentration in MeCN 11) Voltage applied

J[mA/cm²]⁽⁷⁾ 12.6

13.3

12.9

17.6

16.0

35.0

25.4

161

11.5

Results and

Discussion: Three electrodes consisting of nano-porous TiO₂ layer,

dense TiO₂ layer, and SnO₂/F layer without TiO₂ layer were employed. When voltage was applied, three cells showed almost the same current-voltage behaviors, leading to the conclusion that current does not changed

TiO2: P25 ; Ru(bpy)3(PF6)2 0.15M in MeCN; 1cm² cell, t:11 µ m even when porous TiO₂ layers with large surface areas were employed. Figure 2 shows the relationship between applied voltage and ECL. Drastic increases in ECL were observed for cells equipped with nano-porous TiO_2 layers. ECL from the cell with dense TiO₂ layers did not change, compared with that without TiO₂ layers, suggesting that the intense ECL is not associated with TiO2 itself, but the nano-porous structures. $Ru(bpy)_3(PF_6)_2$ has a photoluminescence at 596.5 nm in acetoritrile when this was excited with 350nm light. ECL from the cell with TiO₂ layers had the maximun wavelength at 620.4 nm. The ECL was red-shifted by 23.9 nm. The half value width of ECL from the cell having porous TiO_2 layers was 104 nm, larger than that of 65 nm of PL. This suggests that species for ECL might be somehow restricted mortionally.

is that chances for collision between Ru(I) and Ru(III) increased. The collision chance decreases at least the following mechanims. One is that Ru(I) or Ru(III) reaches the opposite exchanges on the o electrode and makes electron opposite electrodes. The other possibility is that Ru(I) or Ru(III) is deactivated by some reasons during diffusions in acetonitrile. Ru(I) is expected to be less stable than Ru(III). If the former is the major reason, ECL enhancement should occur whether plus or minos voltage was applied to the TiO_2 electrode. However, the ECL enhancement occurred only when minous was applied to the TiO_2 electrode. The latter mechanism explains well all the phenomena observed. On the porous TiO_2 cathode, Ru(II) is reduced to form Ru(I). The less stable Ru(I) was stabilized within the nano-pores in cathode TiO_2 layers. $Ru(I)^+$ may be bonded to TiO^- on the nanopore walls with ionic interactions. The Ru(III) species diffuse from anodes to cathode TiO₂ nano-pores and collisions occur within the nanopores. This would increase the collision opprtunities between Ru(I) and Ru(III). The fact that ECL increased with an increase in the porous TiO₂ thickness also support this mechanism.

Conclusion: We found that electrochemical luminescences enhanced drastically by use of cathodes with nano-porous TiO₂ layers. It is likely that the enhancement is associated with increases in collision opprtunity between Ru(I) and Ru(III) in the nano-pores of TiO₂ layers.

References

1 A.Hagffeldt and M.Gratzel, Chem.Rev., 1995, 95, 49

 P.McCord, A.J.Barad, *J.Electroanal.Chem.*, 1991, **318**, 91.
 A.Wu, D.Yoo, J.-K.Lee, M.F.Rubner, *J.Am.Chem.Soc.*, 1999, **121**, 4883.

4 E.S.Handy; A.J.Pal, M.F.Rubner, J.Am. Chem.Soc., 1999, 121, 3525.

5 J.-K.Lee, D.Yoo, M.F.Rubner, *Chem.Mater.*, 1997, 9, 1710.
 6 A.Wu, J.-K.Lee, M.F.Rubner, *Thin Solid Films*, 1998, 329, 663

7 H.Rudmann, S.Shimada, M.F.Rubner, J.Am.Chem.Soc., 2002, 124, 4918

8 H.Rudmann, M.F.Rubner, *J.Appl.Phys.*, 2001, **90**, 4338.
9 K.Nishimura, Y.Hamada, T.Tsujioka, S.Matsuta, K.Shibata, T.Fuyuki, Jpn.J.Appl.Phys., 2001, 40, L495

10 K.Nishimura, Y.Hamada, T.Tsujioka, S.Matsuta, K.Shibata, T.Fuyuki, Jpn.J.Appl.Phys., 2001, 40, L1323