PHOTOVOLTAIC CELLS COMPOSED OF FULLERENE CLUSTERS AND A MOLECULAR DYAD WITH AN EXTREMELY LONG LIFETIME OF THE ELECTRON-TRANSFER STATE

<u>Shigeki Hattori</u>, ^a Taku Hasobe, ^{a,b} Hiroaki Kotani, ^a Kei Ohkubo, ^a Kohei Hosomizu, ^c Hiroshi Imahori, ^{c,*} Prashant V. Kamat, ^{b,*} and Shunichi Fukuzumi ^{a,*}

^aDepartment of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan

 ^bRadiation Laboratory and Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
^cDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, PRESTO, JAPAN

Science and Technology Agency (JST), Nishikyo-ku, Kyoto 615-8510, Japan and Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-Nishihiraki-cho,

Sakyo-ku, Kyoto 606-8103, Japan

hattoris@chem.eng.osaka-u.ac.jp imahori@scl.kyoto-u.ac.jp kamat@hertz.rad.nd.edu fukuzumi@chem.eng.osaka-u.ac.jp

Extensive efforts have so far been devoted to develop molecular triads, tetrad, pentads, etc, which can mimic a cascade of electron-transfer steps in the natural photosynthetic reaction center, leading to long-range charge separation with prolonged lifetime of the chargeseparated state into millisecond and even into second range. However, the synthetic difficulty has precluded the development of low-cost photovoltaic devices using such model compounds of the photosynthetic reaction center. In addition, a significant amount of energy is lost during the multi-step electron-transfer processes in both natural and artificial long-range charge separation.

In order to avoid such wasting energy loss, we have recently designed and synthesized a simple dyad, 9mesityl-10-methylacridinium ion (Acr⁺–Mes), which exhibits extremely slow charge-recombination of the electron-transfer state.¹ We report herein a unique organic photovoltaic cell composed of fullerene clusters and the molecular dyad with an extremely long lifetime of the electron-transfer state.

First, we synthesized Acr^+ -Mes with carboxylic acid (Acr^+ -Mes-COOH) to deposit the dyad on OTE/SnO₂. The chemical structure of Acr^+ -Mes-COOH is shown in Figure 1.

The dyad (Acr⁺–Mes–COOH) was adsorbed by immersing OTE/SnO₂ electrode in 2 x 10^{-3} M ethanol solution overnight to prepare OTE/SnO₂/Acr⁺–Mes–COOH electrode. However, the absorption property is poor due to the low extinction coefficient of Acr⁺–Mes–COOH. In order to improve the light-harvesting efficiency, we further deposited fullerene (C₆₀) clusters electrophoretically on OTE/SnO₂/Acr⁺–Mes–COOH electrode (denoted as OTE/SnO₂/Acr⁺–Mes–COOH+(C₆₀)_n).

Photoelectrochemical measurements were performed using a standard two-electrode system consisting of a working electrode and Pt wire gauze electrode in airsaturated acetonitrile containing 0.5 M NaI and 0.01 M I₂. The maximum IPCE (incident photon-to-photocurrent efficiency) value of OTE/SnO₂/Acr⁺-Mes-COOH (spectrum a in Figure 2) is only 2 % (445 nm), whereas the of OTE/SnO₂/Acr⁺-Mes-COOH+(C_{60})_n IPCE value (spectrum d in Figure 2) reaches 15%. The IPCE value of $OTE/SnO_2/Acr^+-Mes-COOH+(C_{60})_n$ is much higher than the sum of the two individual IPCE values of the individual systems (OTE/SnO2/Acr+-Mes-COOH and $OTE/SnO_2/(C_{60})_n$; spectrum c in Figure 2) in the visible region. The long lifetime of the electron-transfer state (Acr'-Mes')¹ produced upon the photoexcitation ensures electron transfer from Acr' to C_{60} , leading to the efficient photocurrent generation. The formation of C_{60} radical anion was confirmed by nanosecond laser flash photolysis measurements.

In summary, we have constructed novel supramolecular photovoltaic cells using molecular nanocluster assemblies of fullerene and a simple molecular dyad with an extremely long lifetime of the electron-transfer state.

Figure 1. Chemical structure of Acr⁺–Mes–COOH.

Figure 2. Photocurrent action spectra of (a) OTE/SnO₂/Acr⁺–Mes–COOH and (b) OTE/SnO₂/(C₆₀)_n electrodes, (c) the sum of the action spectra of OTE/SnO₂/Acr⁺–Mes–COOH and OTE/SnO₂/(C₆₀)_n electrodes, and (d) photocurrent action spectrum of OTE/SnO₂/Acr⁺–Mes–COOH + (C₆₀)_n electrode.

References

 Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.