Cathodic Properties of Strontium-doped Lanthanum Ferrite in Proton Conducting SOFC for Low Temperature

H. Hiroyuki, T. Ikuta, H. Yahiro, G. Okada

Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan

The use of perovskite-type oxide as a cathodic material has received much attention due to the lowering of the operating temperature for SOFC and the low cost compared with platinum. Some perovskite-type oxides such as $La_{0.7}Sr_{0.3}CoO_3$ and $La_{0.7}Sr_{0.3}MnO_3$ showed the high cathodic performance for SOFC with oxygen ion conductor¹; however, little is known for SOFC with proton conductor. Here we wish to report the cathodic performance of perovskite-type oxides when the $SrCe_{0.95}Yb_{0.05}O_{3-\alpha}$ exhibiting the proton conduction in hydrogen atmosphere at 873-1073 K² was used as a solid electrolyte in a H₂-O₂ fuel cell.

Fig. 1 shows the cathodic overpotential curves of La_{0.7}Sr_{0.3}MO₃ (M=Mn, Fe, and Co) electrodes in a H₂-O₂ fuel cell at 773-973 K. When the fuel cell was operated at 773 K, La_{0.7}Sr_{0.3}FeO₃ showed the lowest overpotential (η) among the cathodes tested in the present study; the order of η was La_{0.7}Sr_{0.3}FeO₃ < La_{0.7}Sr_{0.3}MnO₃ < La_{0.7}Sr_{0.3}CoO₃ which is different from that for a H₂-O₂ fuel cell with oxygen ion conductor¹⁾. This indicates that the most suitable cathode material for proton conductor is different from that for oxide-ion conductor. At higher temperature, the order of the overpotential is essentially the same. The influence of heat treatment temperature for cathodic overpotential was investigated for La_{0.7}Sr_{0.3}FeO₃ electrode. The results are shown in Fig. 2. The cathodic overpotential increased with the increase in the heat treatment temperature from 1273 to 1473 K. The SEM of image the surface of La_{0.7}Sr_{0.3}FeO₃ after electrochemical measurements showed that the sintering of $La_{0.7}Sr_{0.3}FeO_3$ particles was suppressed by the decrease in the firing temperature.

The cathodic overpotentials of La_{0.7}Sr_{0.3}FeO₃ and sputtered platinum were measured at 973 K by changing the partial pressure of oxygen, respectively. Then electrode resistance, R_{el} , can be estimated from the slope of I-V plots. It is commonly known that the $R_{\rm el}$ is the parameter to determine the rate-determining step of electrode reaction and R_{el} is proportional to P_{O2}^{n} where nvalue gives the type of species involved in the electrode reaction. Fig. 3 shows the plots of log Rel against the log P_{O2} when each La_{0.7}Sr_{0.3}FeO₃ and sputtered platinum was used as a cathode. The cathode resistance of $La_{0.7}Sr_{0.3}FeO_3$ was independent of P_{O^2} while that of sputtered platinum was proportional to $P_{02}^{-1/4}$. And we measured the overpotential of La_{0.7}Sr_{0.3}FeO₃ electrode as a function of P_{O2} under wet condition. In this case also, nvalue was found to be close to zero; however, the value of Rel under wet condition is larger than that under dry condition, indicating that R_{el} is independent of P_{O2} and is dependent on P_{H2O}. This result may suggest that the ratedetermining step of cathode reaction on La_{0.7}Sr_{0.3}FeO₃ is different from that on sputtered platinum since the oxygen atoms adsorbed on $La_{0.7}Sr_{0.3}FeO_3$ with mixed ionconductor of electron and oxide-ion can readily diffuse to the active site through not only surface but also the bulk.

Y. Takeda, R Kanno, M. Noda, Y. Tomida, and O. Yamamoto, *J Electrochem. Soc.*, **134**, 2656 (1987).

Fig.1. Cathodic overpotential curves in H_2 , Pt| $SrCe_{0.95}Yb_{0.05}O_{3-\alpha}|La_{0.7}Sr_{0.3}MO_3 \ (M=Mn, Fe, Co)$ at 773-973K. The electrodes were heated at 1473 K for 3h before the measurements.

Fig.2. Cathodic overpotential curves in H_2 , Pt| SrCe_{0.95}Yb_{0.05}O_{3- α}|La_{0.7}Sr_{0.3}FeO₃ at 773-973K. The electrodes were heated at 1273 - 1473 K

Fig.3. Plot of log R_{el} against log P_{O2} at the cathode. (•) $La_{0.7}Sr_{0.3}FeO_3$ ($P_{H2O} = 0$ atm), (•) $La_{0.7}Sr_{0.3}FeO_3$ ($P_{H2O} = 0.081$ atm), and (•) sputtered platinum ($P_{H2O} = 0$ atm).

^{2.} H. Iwahara, Solid State Ionics, 86-88, 9 (1996).