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Oxygen sensors for automotive applications control the air-fuel 
ratio in order to reduce fuel consumption. New control strategies 
for direct injection engines or lean burn engines operating with 
air excess (lambda > 1) require more advanced sensor concepts 
[1]. 

As a future option, research groups evaluate the features of a 
temperature independent resistive-type oxygen sensor based on 
semiconducting metal oxides. 

Acceptor doped Sr(Ti,Fe)O3-δ has been qualified as a resistive 
type oxygen sensor material [2], its electrical conductivity 
reflects the equilibrium between the oxygen partial pressure pO2 

in the atmosphere and the bulk stoichiometry at temperatures 
typically above 700 °C. In contrary to donor doped compounds, 
Sr(Ti,Fe)O3-δ shows a long term stable and temperature 
independent characteristic [3]. 

The dependence of electrical conductivity on the oxygen partial 
pressure is well understood on a defect chemistry basis [4]. 

Fig. 1:  Design concept of a planar exhaust gas sensor. 
Sr(Ti,Fe)O3-δ: resistive type oxygen sensor material 

For the development of a planar type sensing element, 
Sr(Ti,Fe)O3-δ has to be applied as a thick film on a zirconia 
substrate, which has integrated Pt heating elements as well as Pt 
contacts. Fig. 1 shows the design concept and the multi-layer 
structure of a planar exhaust gas sensor [5].  

Temperature independence (at T=750...900°C, pO2=10-6...1 bar) 
and fast response times (t90= 6.5 ms at 900 °C), both key issues 
of Sr(Ti,Fe)O3-δ,  have to be maintained over the entire lifetime 
of the sensing element. In this work, financially supported by the 
BMBF (PTJ-NMT 03N3102), the stability of the interface 
Sr(Ti,Fe)O3-δ/Al2O3 was investigated by interdiffusion 
experiments and by the calculation of chemical potential 
diagrams (CPD) using the software MALT [6,7,8,9]. 

CPDs have been calculated for the solid solution end members 
SrTiO3 and Sr2Fe2O5, both in contact with the insulating Al2O3 
layer, for T=750...900°C and pO2, as shown in figures 2 and 3. 

The results support the development of a buffer layer, which 
inhibits the interdiffusion and the formation of secondary layers 
at the interface Sr(Ti,Fe)O3-δ/Al2O3  

 

Fig. 2: Chemical potential diagram of  Sr-Ti-O-Al system at 
T=800 °C and pO2 =10-15 bar  

 

Fig. 3: Chemical potential diagram of  Sr-Fe-O-Al system at 
T=800 °C and pO2 =10-15 bar  
 
[1] E. Ivers-Tiffée et al., Electrochimica Acta 47 (2001) 807-

814 
[2] R. Moos et al., Sensors and Actuators B 67 (2000), 178-183 
[3] W. Menesklou et. al., MRS Symp. Proc. 604 (2000), 305 
[4] W. Menesklou et al., Sensors and Actuators B 59 (1999), 

184-189 
[5] J. Riegel et al., Solid State Ionics 152-153 (2002) 783-800 
[6] H. Yokokawa et al., Thermochimica Acta 245 (1994), 45-

55; see http://www.kagaku.com/malt/index.html 
[7] H. Yokokawa, Annu. Rev. Mater. Res. (2003), 581-610 
[8] H. Yokokawa, Journal of Phase Equilibria, Vol. 20 No. 3 

(1999) 
[9] H. Yokokawa et. al., Calphad Vol. 26 No. 2 (2002), 155-

166 

insulation Al2O3 layer 

Sr(Ti0.65Fe0.35)O3  

(2.5mmx5mmx15µm) 

buffer layer 

ZrO2 substrate 

Pt heater 

ZrO2 substrate 

Buffer-layer

Sr(Ti0.65Fe0.35)O3

ZrO2-substrate

Pt-contacting

Al2O3-layer

Pt-heater

Buffer-layer

Sr(Ti0.65Fe0.35)O3

ZrO2-substrate

Pt-contacting

Al2O3-layer

Pt-heater

a) 

b) 


